Вопрос задан 26.07.2023 в 15:54. Предмет Алгебра. Спрашивает Барсегян Артём.

Найти производную (максимально полное решение) :

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ефремова Маргарита.

y=\sqrt{x+\sqrt{x+\sqrt{x}}}\; \; ,\; \; (\sqrt{u})'=\frac{1}{2\sqrt{u}}\cdot u'\\\\y'=\frac{1}{2\sqrt{x+\sqrt{x+\sqrt{x}}}}\cdot (x+\sqrt{x+\sqrt{x}})'=\\\\=\frac{1}{2\sqrt{x+\sqrt{x+\sqrt{x}}}}\cdot \Big (1+\frac{1}{2\sqrt{x+\sqrt{x}}}\cdot (x+\sqrt{x})'\Big )=\\\\=\frac{1}{2\sqrt{x+\sqrt{x+\sqrt{x}}}}\cdot \Big (1+\frac{1}{2\sqrt{x+\sqrt{x}}}\cdot (1+\frac{1}{2\sqrt{x}})\Big )=\\\\= \frac{1}{2\sqrt{x+\sqrt{x+\sqrt{x}}}}\cdot \Big (1+\frac{2\sqrt{x}+1}{4\sqrt{x}\cdot \sqrt{x+\sqrt{x}}}\Big )=

=\frac{1}{2\sqrt{x+\sqrt{x+\sqrt{x}}}}\cdot \frac{4\sqrt{x}\cdot \sqrt{x+\sqrt{x}}\; +\, 2\sqrt{x}\; +1}{4\sqrt{x}\cdot \sqrt{x+\sqrt{x}}}=\frac{4\sqrt{x}\cdot \sqrt{x+\sqrt{x}}\; +\, 2\sqrt{x}\; +1}{8\sqrt{x+\sqrt{x+\sqrt{x}}}\; \cdot \, \sqrt{x+\sqrt{x}}\; \cdot \, \sqrt{x}}\; .

0 0
Отвечает Лихачев Егор.

y' = (\sqrt{x + \sqrt{x + \sqrt{x}}})'=((x+(x+x^{0.5})^{0.5})^{0.5})'=\\\frac{1}{2(x+(x+x^{0.5})^{0.5})^{0.5}}*(x+(x+x^{0.5})^{0.5})'=\\\frac{1+((x+x^{0.5})^{0.5})'}{2(\sqrt{x + \sqrt{x + \sqrt{x}}})}=

=>

\frac{1+\frac{(x+x^{0.5})'}{2(\sqrt{x+\sqrt{x}})}}{2(\sqrt{x+\sqrt{x+\sqrt{x}}})}=\\\frac{1+\frac{1+(x^{0.5})'}{2(\sqrt{x+\sqrt{x}})}}{2(\sqrt{x+\sqrt{x+\sqrt{x}}})}=

=>

\frac{1+\frac{1+\frac{1}{2\sqrt{x}}}{2(\sqrt{x+\sqrt{x}})}}{2(\sqrt{x+\sqrt{x+\sqrt{x}}})}=

Дальше уже обыкновенные дроби, производных нет, привести к общему знаменателю, сократить и т.д.

\frac{\frac{\frac{4\sqrt{x}(\sqrt{x+\sqrt{x}})+2\sqrt{x}+1}{2\sqrt{x}}}{2(\sqrt{x+\sqrt{x}})}}{2(\sqrt{x+\sqrt{x+\sqrt{x}}})}

=>

\frac{4\sqrt{x}(\sqrt{x+\sqrt{x}})+2\sqrt{x}+1}{2\sqrt{x}}*\frac{2(\sqrt{x+\sqrt{x+\sqrt{x}}})}{2(\sqrt{x+\sqrt{x}})}

=>

\frac{(2\sqrt{x}(\sqrt{x+\sqrt{x}})+2\sqrt{x}+1)(\sqrt{x+\sqrt{x+\sqrt{x}}})}{\sqrt{x}(\sqrt{x+\sqrt{x}})}

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

К сожалению, в вашем запросе не указана конкретная функция, чья производная требуется найти. Пожалуйста, предоставьте функцию, и я с удовольствием помогу вам найти её производную.

Если у вас есть математическая функция, например, f(x) = x^2 + 3x + 2, и вы хотите найти её производную, просто укажите эту функцию, и я помогу вам найти производную.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос