
СРОЧНО ПОЖАЛУЙСТА Решите уравнение используя введение новой переменной (х^2-2х)^2+(х-1)^2=73


Ответы на вопрос





Давайте введем новую переменную и обозначим ее за t:
t = (x^2 - 2x)
Теперь можем переписать уравнение с использованием этой новой переменной:
t^2 + (x - 1)^2 = 73
Далее, раскроем скобки:
t^2 + (x^2 - 2x + 1) = 73
Теперь приведем подобные слагаемые:
t^2 + x^2 - 2x + 1 = 73
Перенесем все в левую часть уравнения:
t^2 + x^2 - 2x + 1 - 73 = 0
Упростим:
t^2 + x^2 - 2x - 72 = 0
Теперь наша задача - решить квадратное уравнение относительно t:
t^2 + x^2 - 2x - 72 = 0
Мы также можем заметить, что у нас есть еще одно уравнение, связанное с введенной нами переменной t:
t = x^2 - 2x
Мы можем решить это уравнение и найти значения t, а затем подставить их в квадратное уравнение выше для определения соответствующих значений x.
Решим уравнение t = x^2 - 2x:
t = x^2 - 2x
Подставим это в квадратное уравнение:
(x^2 - 2x)^2 + (x - 1)^2 = 73
Теперь подставим t = x^2 - 2x:
(t)^2 + (x - 1)^2 = 73
так как t = x^2 - 2x, то (t)^2 = (x^2 - 2x)^2
Подставляем:
(x^2 - 2x)^2 + (x - 1)^2 = 73
x^4 - 4x^3 + 4x^2 + x^2 - 2x + 1 = 73
Теперь приводим подобные слагаемые:
x^4 - 4x^3 + 5x^2 - 2x + 1 - 73 = 0
x^4 - 4x^3 + 5x^2 - 2x - 72 = 0
Теперь у нас есть квадратное уравнение относительно x, которое мы можем решить. После нахождения корней x, мы можем найти соответствующие значения t, используя уравнение t = x^2 - 2x.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili