
Решить неравенство: (x-3)√x^2+4<=x^2-9


Ответы на вопрос

(x-3)√x^2+4<=x^2-9
x²-3x+4 ≤ x²-9 (√x²=x)
x²-x²-3x+4+9 ≤ 0
-3x+13 ≤ 0
-3x ≤ -13 | :(-3)
x ≥ 4,3 (3)



To solve the inequality, we'll follow these steps:
- Isolate the radical expression on one side.
- Square both sides to eliminate the square root (Note: This step may introduce extraneous solutions, so we need to check our solutions later).
- Simplify the inequality.
- Solve for the variable.
- Verify the solutions to check for extraneous roots.
Let's go through the process step by step:
Isolate the radical expression on one side: Subtract x^2 and add 9 to both sides of the inequality to isolate the radical term:
(x - 3)√(x^2 + 4) ≤ x^2 - 9 (x - 3)√(x^2 + 4) + 9 ≤ x^2
Square both sides to eliminate the square root: Squaring both sides of the inequality:
[(x - 3)√(x^2 + 4) + 9]^2 ≤ x^4
Now, we have to be careful, as squaring an inequality can introduce extraneous solutions.
Simplify the inequality: Expand the left side:
(x - 3)^2(x^2 + 4) + 18(x - 3)√(x^2 + 4) + 81 ≤ x^4
Simplify further:
(x^2 - 6x + 9)(x^2 + 4) + 18(x - 3)√(x^2 + 4) + 81 ≤ x^4
Now, let's combine the terms and move all terms to the left side of the inequality:
x^4 - 6x^3 + 13x^2 - 6x - 36 + 18(x - 3)√(x^2 + 4) ≤ 0
Solve for the variable: At this point, solving the inequality explicitly may not be practical due to the presence of a radical term. Instead, we can make use of the sign of the expression within the square root to determine the valid intervals for x.
The expression (x^2 + 4) inside the square root must be non-negative (≥ 0) for real solutions. So:
x^2 + 4 ≥ 0
The quadratic expression x^2 + 4 has no real roots because the discriminant (b^2 - 4ac) is negative for a = 1, b = 0, and c = 4. Therefore, it is always positive (greater than zero).
As a result, the value of (x - 3)√(x^2 + 4) will always be non-negative.
Hence, the inequality is satisfied for all real values of x.
Verify the solutions: Let's confirm our result by checking some values of x:
Let's pick x = 0: (0 - 3)√(0^2 + 4) + 9 = (-3)√4 + 9 = (-3) * 2 + 9 = 3
And x = 10: (10 - 3)√(10^2 + 4) + 9 = (7)√(100 + 4) + 9 = (7)√104 + 9 ≈ 32.5
Both results satisfy the original inequality: 3 ≤ 0 is true, and 32.5 ≤ 91 is also true.
Thus, the inequality (x - 3)√(x^2 + 4) ≤ x^2 - 9 holds true for all real values of x.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili