
A1=7 d=2 a12-? S15-? Арифметическая прогрессия.


Ответы на вопрос

а12=7+2*11=15
s15=(2*7+(15-1))*15/2=(2*7+2*14)*15/2=42*7,5=315
ну как-то так))



To find the values of a12 and S15 in the arithmetic progression, we need to use the formulas for the nth term (a_n) and the sum of the first n terms (S_n) of an arithmetic progression.
In an arithmetic progression, the nth term (a_n) is given by:
a_n = a1 + (n - 1) * d
where: a_n is the nth term, a1 is the first term of the progression (A1 in this case), n is the term number whose value we want to find, d is the common difference between consecutive terms (given as 2 in this case).
The sum of the first n terms (S_n) in an arithmetic progression is given by the formula:
S_n = (n / 2) * (a1 + a_n)
where: S_n is the sum of the first n terms, n is the number of terms, a1 is the first term, a_n is the nth term.
Now, let's find a12 and S15:
Given: A1 = 7 (the first term) d = 2 (common difference)
- Finding a12: a12 = a1 + (12 - 1) * d a12 = 7 + 11 * 2 a12 = 7 + 22 a12 = 29
So, the 12th term (a12) in the arithmetic progression is 29.
- Finding S15: S15 = (15 / 2) * (a1 + a15) S15 = (15 / 2) * (7 + a15)
Now, we need to find a15. Using the same formula as before: a15 = a1 + (15 - 1) * d a15 = 7 + 14 * 2 a15 = 7 + 28 a15 = 35
Now, we can substitute a15 back into the equation for S15: S15 = (15 / 2) * (7 + 35) S15 = (15 / 2) * 42 S15 = 15 * 21 S15 = 315
So, the sum of the first 15 terms (S15) in the arithmetic progression is 315.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili