
Y = 3x^2-1/x-1 , y" производные высших порядков


Ответы на вопрос

Y = 3x^2-1/x-1
У'=6х+ 1/х^2
У''=6 -2/х^3



To find the second derivative of the given function Y with respect to x, we need to apply differentiation twice. Let's start step by step:
Given function: Y = (3x^2 - 1) / (x - 1)
Step 1: Find the first derivative (y') of Y with respect to x. To find y', we use the quotient rule of differentiation:
(u/v)' = (u'v - uv') / v^2
where u = (3x^2 - 1) and v = (x - 1).
Now, applying the quotient rule:
Y' = [(2 * 3x * 1) - (3x^2 - 1) * 1] / (x - 1)^2 = (6x - 3x^2 + 1) / (x - 1)^2
Step 2: Find the second derivative (y") of Y with respect to x. To find y", we differentiate Y' (which we found in step 1) using the standard differentiation rules:
Y" = d/dx [(6x - 3x^2 + 1) / (x - 1)^2]
To simplify this expression, we need to apply the quotient rule again:
Let u = (6x - 3x^2 + 1) and v = (x - 1)^2
Then, u' = 6 - 6x (derivative of 6x), and v' = 2(x - 1) (derivative of (x - 1)^2).
Now, applying the quotient rule:
Y" = [(u'v - uv') / v^2]' = [(6 - 6x)(x - 1)^2 - (6x - 3x^2 + 1) * 2(x - 1)] / (x - 1)^4
Simplifying further:
Y" = [6(x - 1)^2 - 6x(x - 1)^2 - 2(6x - 3x^2 + 1)(x - 1)] / (x - 1)^4
Y" = [6(x - 1)^2 - 6x(x^2 - 2x + 1) - 2(6x^2 - 6x + 1)(x - 1)] / (x - 1)^4
Y" = [6(x^2 - 2x + 1) - 6x(x^2 - 2x + 1) - 2(6x^2 - 6x + 1)(x - 1)] / (x - 1)^4
Y" = [6x^2 - 12x + 6 - 6x^3 + 12x^2 - 6x - 2(6x^3 - 6x^2 + x - 1)] / (x - 1)^4
Y" = [6x^2 - 12x + 6 - 6x^3 + 12x^2 - 6x - 12x^3 + 12x^2 - 2x + 2] / (x - 1)^4
Y" = (-18x^3 + 30x^2 - 20x + 8) / (x - 1)^4
So, the second derivative of Y with respect to x is:
Y" = (-18x^3 + 30x^2 - 20x + 8) / (x - 1)^4


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili