Вопрос задан 22.07.2023 в 01:06. Предмет Алгебра. Спрашивает Пряхин Слава.

18-2x/x-3+4x/3-x=2xребят решите уравнение пожалуйста)​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Куренко Нина.

Там всё написал , расписал


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения данного уравнения, начнем с объединения всех членов уравнения в одну дробь и приведения подобных:

(18 - 2x)/(x - 3) + (4x)/(3 - x) = 2x

Для начала найдем общий знаменатель для двух дробей, который равен (x - 3)(3 - x) = (x - 3)(-1)(x - 3) = -(x - 3)^2.

Теперь приведем дроби к общему знаменателю:

[(18 - 2x)(-1)(x - 3)^2 + 4x(x - 3)^2] / (x - 3)^2 = 2x

Теперь умножим обратно на знаменатель (x - 3)^2, чтобы избавиться от него в числителе:

(18 - 2x)(-1) + 4x(x - 3) = 2x * (x - 3)^2

Раскроем скобки:

-18 + 2x + 4x^2 - 12x = 2x * (x^2 - 6x + 9)

Теперь приведем подобные члены:

4x^2 - 10x + 18 = 2x^3 - 12x^2 + 18x

Теперь перенесем все члены в одну сторону уравнения, чтобы получить стандартную форму уравнения:

2x^3 - 12x^2 + 18x - 4x^2 + 10x - 18 = 0

2x^3 - 16x^2 + 28x - 18 = 0

Теперь можем попытаться решить уравнение. Однако обратите внимание, что это уравнение третьей степени (кубическое уравнение), которое может иметь сложные корни. Решение этого уравнения явно выходит за рамки простого аналитического метода и потребует применения численных методов.

Если вы ищете приближенное численное решение, вы можете воспользоваться методом численного решения уравнений, таким как метод Ньютона или метод бисекции. Если вы хотите продолжить и попробовать найти точное аналитическое решение, я могу продолжить описывать методы для решения кубических уравнений. Пожалуйста, дайте знать, как вы хотите продолжить!

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос