
№1 (a+2b)(a²-2ab+4b²) №2 a)4a²-9b² б)-4x²+8x-4 №3 (2x-1)²=(2x+3)(2x-3) №4 4x²+y² > 4xy-5 №5
24²-11²/49²-36²

Ответы на вопрос

С 1 по 3 пошаговое объяснение




Sure, I'll help you with the expressions you provided:
№1: (a + 2b)(a² - 2ab + 4b²)
To simplify this expression, you can use the distributive property of multiplication:
(a + 2b)(a² - 2ab + 4b²) = a(a² - 2ab + 4b²) + 2b(a² - 2ab + 4b²)
Now, multiply each term:
a(a² - 2ab + 4b²) = a³ - 2a²b + 4ab² 2b(a² - 2ab + 4b²) = 2b³ - 4b²a + 8b³
The simplified expression is:
a³ - 2a²b + 4ab² + 2b³ - 4b²a + 8b³
№2: a) 4a² - 9b²
This expression seems to be already simplified. It's a binomial that cannot be factored further.
b) -4x² + 8x - 4
This expression also seems to be already simplified. It's a trinomial that cannot be factored further.
№3: (2x - 1)² = (2x + 3)(2x - 3)
Let's expand the left-hand side first:
(2x - 1)² = (2x - 1)(2x - 1)
To expand this, you can use the FOIL method:
(2x - 1)(2x - 1) = 4x² - 2x - 2x + 1 = 4x² - 4x + 1
Now let's simplify the right-hand side:
(2x + 3)(2x - 3) = 4x² - 6x + 6x - 9 = 4x² - 9
The statement (2x - 1)² = (2x + 3)(2x - 3) is not correct; they are not equal.
№4: 4x² + y² > 4xy - 5
To solve this inequality, let's move all terms to the left side:
4x² + y² - 4xy + 5 > 0
This is a quadratic inequality. To solve it, we need to find the critical points where the expression equals zero and determine the regions where it's greater than zero.
To find the critical points, we set the expression inside the inequality to zero:
4x² + y² - 4xy + 5 = 0
This quadratic equation may or may not have real solutions. It depends on the specific values of x and y. The inequality can't be simplified further without more information about the variables x and y.
№5: (24² - 11²) / (49² - 36²)
Let's calculate the expression:
(24² - 11²) / (49² - 36²) = (576 - 121) / (2401 - 1296) = 455 / 1105
The fraction 455/1105 cannot be simplified further since the numerator and denominator do not have any common factors other than 1.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili