Вопрос задан 20.07.2023 в 15:50. Предмет Алгебра. Спрашивает Яговкин Артём.

Трёхчлен p2−20p+100 можно представить в виде произведения двух множителей. Если один множитель

равен (p−10) , то чему равен второй множитель? (10+p) (p−10) (10−p) (p+10)
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Смирнов Евгений.

(р-10)

Ибо

а^2-2ab^2+b^2=(a-b)^2

А (p-10)(p-10)=(p-10)^2=p^2-20p+10^2

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для представления трехчлена в виде произведения двух множителей, нужно разложить его на множители. Для этого воспользуемся методом разложения квадратного трехчлена.

У нас есть трехчлен: p^2 - 20p + 100.

Чтобы разложить его на множители, смотрим на его структуру: a^2 - 2ab + b^2 = (a - b)^2.

Таким образом, сравнивая с нашим трехчленом, мы видим, что это квадрат разности (p - 10)^2.

Теперь, если один из множителей равен (p - 10), то второй множитель должен быть равен (p - 10), так как квадрат разности двух одинаковых выражений равен произведению этих выражений.

Таким образом, второй множитель равен (p - 10).

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос