6x-12y=-6 -56x+2y=-54 решить функцыю методом додавання
Ответы на вопрос
надеюсь, ты поймешь мой почерк

To solve the system of equations using the method of addition (also known as the method of elimination or the method of adding equations), we'll add the two equations together to eliminate one variable and then solve for the other variable. Here are the steps:
Step 1: Multiply the two equations to make the coefficients of either x or y in both equations equal:
Multiply the first equation by 2 and the second equation by -1 to make the coefficients of y the same:
Equation 1: 2(6x - 12y) = 2(-6) --> 12x - 24y = -12 Equation 2: -1(-56x + 2y) = -1(-54) --> 56x - 2y = 54
Step 2: Add the modified equations together to eliminate y:
(12x - 24y) + (56x - 2y) = -12 + 54
Step 3: Simplify the equation:
12x + 56x - 24y - 2y = 42x - 26y = 42
Step 4: Solve for x:
42x = 42 x = 42 / 42 x = 1
Step 5: Substitute the value of x into one of the original equations to find y. We'll use the first equation:
6x - 12y = -6 6(1) - 12y = -6 6 - 12y = -6
Step 6: Solve for y:
-12y = -6 - 6 -12y = -12 y = -12 / -12 y = 1
Step 7: Check the solution by substituting the values of x and y into the second equation:
-56x + 2y = -54 -56(1) + 2(1) = -54 -56 + 2 = -54 -54 = -54
Since both equations hold true when x = 1 and y = 1, the solution is correct. The solution to the system of equations is x = 1 and y = 1.
Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
