Вопрос задан 20.07.2023 в 10:07. Предмет Алгебра. Спрашивает Шемелёв Саша.

Точка движеться по закону S(t)=2t^2-5t+7 Найти скорость движения в момент времени t0=3с

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ермек Мадияр.

Ответ:

S(t)= 10

Объяснение:

подставляем 3 в формулу и получаем S(t)=2*3^2-5*3+7  и просто это решаем и получается 10

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для определения скорости движения точки в момент времени t0 = 3 секунды, нужно вычислить производную функции S(t) по времени t и подставить t0 в полученное выражение.

Итак, дано уравнение функции движения точки: S(t) = 2t^2 - 5t + 7

Для нахождения скорости движения, найдем производную S'(t) по времени t: S'(t) = d/dt (2t^2 - 5t + 7) = 4t - 5

Теперь, чтобы найти скорость в момент времени t0 = 3 секунды, подставим t0 в выражение для производной: S'(t0) = 4 * 3 - 5 = 12 - 5 = 7 м/с

Таким образом, скорость движения точки в момент времени t0 = 3 секунды равна 7 метров в секунду.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос