Вопрос задан 19.07.2023 в 13:32. Предмет Алгебра. Спрашивает Волкова Вика.

Знайти зовнішні кути трикутника якщо його внутрішні кути відносяться як 18:11:7

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Лохматова Виктория.

Ответ:

90,125,145

Объяснение:

..................


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Щоб знайти зовнішні кути трикутника, необхідно врахувати, що сума кутів у трикутнику дорівнює 180°.

Для того щоб визначити значення внутрішніх кутів, будемо використовувати співвідношення 18:11:7.

Нехай x - це коефіцієнт, який множиться на кожен внутрішній кут трикутника.

Тоді внутрішні кути трикутника будуть мати такі значення: Перший внутрішній кут: 18x Другий внутрішній кут: 11x Третій внутрішній кут: 7x

Знаючи, що сума кутів трикутника дорівнює 180°, маємо рівняння:

18x + 11x + 7x = 180

Об'єднаємо подібні члени:

36x = 180

Тепер поділимо обидві сторони на 36, щоб знайти значення x:

x = 180 / 36 x = 5

Тепер, знаючи значення x, можемо знайти величини кожного внутрішнього кута:

Перший внутрішній кут: 18x = 18 * 5 = 90° Другий внутрішній кут: 11x = 11 * 5 = 55° Третій внутрішній кут: 7x = 7 * 5 = 35°

Тепер, щоб знайти зовнішні кути трикутника, ми знаємо, що вони утворюють лінію разом з відповідними внутрішніми кутами, і сума кутів на прямій дорівнює 180°.

Зовнішній кут при першому внутрішньому куті: 180° - 90° = 90° Зовнішній кут при другому внутрішньому куті: 180° - 55° = 125° Зовнішній кут при третьому внутрішньому куті: 180° - 35° = 145°

Отже, зовнішні кути трикутника мають величини 90°, 125° і 145°.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос