
(8x-3)²- 10|8x-3| -24=0 (x² +2x+2) (x²+2x-4)=-5


Ответы на вопрос

(x² + 2x + 2)(x² + 2x - 4) = - 5
Сделаем замену :
x² + 2x - 4 = m ⇒ x² + 2x + 2 = m + 6
(m + 6) * m + 5 = 0
m² + 6m + 5 = 0
По теореме Виета :
m₁ = - 1 m₂ = - 5
1) x² + 2x - 4 = - 1
x² + 2x - 3 = 0
x₁ = - 3 x₂ = 1
2) x² + 2x - 4 = - 5
x² + 2x + 1 = 0
(x + 1)² = 0
x + 1 = 0
x₃ = -1
Ответ : - 3 ; -1 ; 1






Let's solve each equation separately:
- Solving (8x - 3)² - 10|8x - 3| - 24 = 0:
Let's consider two cases for the absolute value term:
Case 1: (8x - 3) ≥ 0 In this case, the absolute value term |8x - 3| is equal to (8x - 3). Substituting it in the equation:
(8x - 3)² - 10(8x - 3) - 24 = 0 Expanding and simplifying:
64x² - 48x + 9 - 80x + 30 - 24 = 0 64x² - 128x + 15 = 0
Case 2: (8x - 3) < 0 In this case, the absolute value term |8x - 3| is equal to -(8x - 3), which simplifies to (-8x + 3). Substituting it in the equation:
(8x - 3)² - 10(-8x + 3) - 24 = 0 Expanding and simplifying:
64x² - 48x + 9 + 80x - 30 - 24 = 0 64x² + 32x - 45 = 0
Now we have two quadratic equations to solve.
Case 1: Solving 64x² - 128x + 15 = 0:
Using the quadratic formula, x = (-b ± √(b² - 4ac)) / (2a), where a = 64, b = -128, and c = 15.
x = (-(-128) ± √((-128)² - 4(64)(15))) / (2(64)) x = (128 ± √(16384 - 3840)) / 128 x = (128 ± √12544) / 128 x = (128 ± 112) / 128
So, x₁ = (128 + 112) / 128 = 240 / 128 = 15/8 And x₂ = (128 - 112) / 128 = 16 / 128 = 1/8
Case 2: Solving 64x² + 32x - 45 = 0:
Using the quadratic formula, x = (-b ± √(b² - 4ac)) / (2a), where a = 64, b = 32, and c = -45.
x = (-(32) ± √((32)² - 4(64)(-45))) / (2(64)) x = (-32 ± √(1024 + 11520)) / 128 x = (-32 ± √(12544)) / 128 x = (-32 ± 112) / 128
So, x₃ = (-32 + 112) / 128 = 80 / 128 = 5/8 And x₄ = (-32 - 112) / 128 = -144 / 128 = -9/8
Therefore, the solutions to the equation (8x - 3)² - 10|8x - 3| - 24 = 0 are x = 15/8, 1/8, 5/8, and -9/8.
- Solving (x² + 2x + 2)(x² + 2x - 4) = -5:
Expanding the left side of the equation:
x⁴ + 2x³ - 4x² + 2x³ + 4x² - 8x + 2x² + 4x - 8 = -5 Combining like terms:
x⁴ + 4x³ + 2x² - 4x - 13 = 0
To solve this quartic equation, a general formula does exist, but it is quite complex. We can approximate solutions numerically or by using computational methods. However, there is no straightforward algebraic solution.
If you need a numerical approximation for the roots of this equation, please let me know and provide a desired level of precision.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili