
5|x| + 3 = 71,7|x|+4,9=102,5|3y|=15


Ответы на вопрос

1.X=7-3
X=4
2.4,9=10
3.2,5•3x[y]=15
7,5x[y]=15
y=2
y=-2
y=-2,y•=2
1 2



To solve the equations involving absolute values, we need to consider both the positive and negative values of the expressions inside the absolute value bars. Let's solve each equation step by step:
- 5|x| + 3 = 71:
First, we isolate the absolute value expression by subtracting 3 from both sides:
5|x| = 71 - 3 5|x| = 68
Next, divide both sides by 5:
|x| = 68/5 |x| = 13.6
Now, we have two cases to consider for |x|:
Case 1: x = 13.6 Case 2: x = -13.6
- 7|x| + 4.9 = 102.5:
Similar to the previous equation, we isolate the absolute value expression:
7|x| = 102.5 - 4.9 7|x| = 97.6
Divide both sides by 7:
|x| = 97.6/7 |x| = 13.942857142857143
Again, consider both cases for |x|:
Case 1: x = 13.942857142857143 Case 2: x = -13.942857142857143
- |3y| = 15:
We don't have an additional constant term, so we directly solve for |3y|:
|3y| = 15
Now, consider both cases for |3y|:
Case 1: 3y = 15 Case 2: 3y = -15
Now, we solve for y for each case:
Case 1: 3y = 15 Divide both sides by 3: y = 15/3 y = 5
Case 2: 3y = -15 Divide both sides by 3: y = -15/3 y = -5
So, the solutions to the given equations are: x = 13.6 or x = -13.6 x = 13.942857142857143 or x = -13.942857142857143 y = 5 or y = -5


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili