
1. (x^2 - 3x - 1)^2 >= ( x^2 + 7x + 1 )^2 2. { x^2 + 2xy = -1 x - 5y = 6


Ответы на вопрос

#1.
x ∈ (-∞; -2] ∪ [-0,2; 0]
Ответ: x ∈ (-∞; -2] ∪ [-0,2; 0].
#2.
Ответ:



Let's solve these two equations step-by-step:
- (x^2 - 3x - 1)^2 >= (x^2 + 7x + 1)^2
To solve this inequality, we'll first expand both sides and then try to simplify it:
Expanding the left side: (x^2 - 3x - 1)^2 = (x^2 - 3x - 1) * (x^2 - 3x - 1) = x^4 - 6x^3 + 11x^2 - 6x + 1
Expanding the right side: (x^2 + 7x + 1)^2 = (x^2 + 7x + 1) * (x^2 + 7x + 1) = x^4 + 14x^3 + 50x^2 + 14x + 1
Now the inequality becomes: x^4 - 6x^3 + 11x^2 - 6x + 1 >= x^4 + 14x^3 + 50x^2 + 14x + 1
Subtracting x^4 from both sides to simplify: -6x^3 + 11x^2 - 6x >= 14x^3 + 50x^2 + 14x
Combining like terms: -20x^3 - 39x^2 - 20x >= 0
Now, let's find the critical points by setting the left-hand side to zero: -20x^3 - 39x^2 - 20x = 0
To solve this equation, we can try to factor out common terms. One possible factorization is: x(-20x^2 - 39x - 20) = 0
Now, let's solve for x by setting each factor to zero:
- x = 0
- -20x^2 - 39x - 20 = 0
To solve the quadratic equation -20x^2 - 39x - 20 = 0, we can use factoring or the quadratic formula. Factoring it, we get: (-4x + 1)(5x + 20) = 0
Setting each factor to zero: 3) -4x + 1 = 0 x = 1/4
- 5x + 20 = 0 x = -4
Now, we have four critical points: x = 0, x = 1/4, x = -4, and the solution to the inequality will lie in the intervals defined by these critical points. We can use test points to check which intervals satisfy the inequality.
- { x^2 + 2xy = -1, x - 5y = 6 }
This appears to be a system of two equations. To solve it, we can use the method of substitution or elimination.
Let's start with substitution: From the second equation, we can express x in terms of y: x = 6 + 5y
Now, we'll substitute this value of x into the first equation: (6 + 5y)^2 + 2(6 + 5y)y = -1
Expanding and simplifying: 36 + 60y + 25y^2 + 12y + 10y^2 = -1 35y^2 + 72y + 37 = 0
Now we have a quadratic equation in terms of y. We can solve for y using the quadratic formula: y = (-b ± √(b^2 - 4ac)) / 2a
For this equation, a = 35, b = 72, and c = 37. y = (-72 ± √(72^2 - 4 * 35 * 37)) / 2 * 35
y = (-72 ± √(5184 - 5180)) / 70 y = (-72 ± √4) / 70 y = (-72 ± 2) / 70
Now, two possible values of y:
y = (-72 + 2) / 70 y = -70 / 70 y = -1
y = (-72 - 2) / 70 y = -74 / 70 y = -37 / 35
Now that we have the values of y, we can find the corresponding values of x using the second equation: For y = -1: x - 5(-1) = 6 x + 5 = 6 x = 6 - 5 x = 1
For y = -37 / 35: x - 5(-37 / 35) = 6 x + 37 / 7 = 6 x = 6 - 37 / 7 x = (42 - 37) / 7 x = 5 / 7
So, the solutions to the system are x = 1, y = -1, and x = 5/7, y = -37/35.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili