To calculate the value of the expression cos(12∘)cos(24∘)cos(48∘)cos(96∘), you can use the trigonometric identity:
cos(A)cos(B)=21[cos(A+B)+cos(A−B)]
So, let's proceed with the calculation step by step:
Step 1: Calculate cos(12∘+24∘) and cos(12∘−24∘)
cos(12∘+24∘)=cos(36∘)
cos(12∘−24∘)=cos(−12∘)=cos(12∘)
Step 2: Calculate cos(36∘+48∘) and cos(36∘−48∘)
cos(36∘+48∘)=cos(84∘)
cos(36∘−48∘)=cos(−12∘)=cos(12∘)
Step 3: Calculate cos(84∘+96∘) and cos(84∘−96∘)
cos(84∘+96∘)=cos(180∘)=−1
cos(84∘−96∘)=cos(−12∘)=cos(12∘)
Now, let's combine the results:
cos(12∘)cos(24∘)cos(48∘)cos(96∘)=21[cos(36∘)+cos(12∘)]×21[cos(84∘)+cos(12∘)]×(−1)
Substitute the calculated values:
cos(12∘)cos(24∘)cos(48∘)cos(96∘)=21[cos(36∘)+cos(12∘)]×21[cos(84∘)+cos(12∘)]×(−1)
=21[cos(36∘)+cos(12∘)]×21[cos(84∘)+cos(12∘)]×(−1)
=21[cos(36∘)
0
0