Вопрос задан 13.07.2023 в 15:42. Предмет Алгебра. Спрашивает Белкина Катя.

(x-5)^4-3(x-5)^2-4=0

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Йосепчук Ігор.

(x-5)^4-3(x-5)^2-4=0

1) Это уравнение легко привести к квадратному уравнению.

Для этого выполним замену:

   (x-5)^2=y        =>   (x-5)^4=y^2

и получим квадратное уравнение с ОДЗ:  y\geq 0

   y^2-3y-4=0

2) Решим по теореме Виета:

  y_1=-1  не удовлетворяет ОДЗ.  

  y_2=4

3) Выполним обратную замену:

  (x-5)^2=4

 4) Получили два уравнения:

   x-5=-2      и  

   x-5=2

5) Решим их и получим:

 x_1=3

 x_2=7

Ответ:  {3;  7}

0 0
Отвечает Саулина Алиса.

Ответ:

Объяснение:

вот и все


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve the equation (x5)43(x5)24=0(x-5)^4-3(x-5)^2-4=0, we can use a substitution to simplify the equation. Let u=(x5)2u = (x-5)^2. Then, our equation becomes:

u23u4=0u^2 - 3u - 4 = 0.

Now, we can solve this quadratic equation for uu:

u23u4=0u^2 - 3u - 4 = 0.

To solve this, we can use factoring:

(u4)(u+1)=0(u-4)(u+1) = 0.

Now, set each factor to zero and solve for uu:

u4=0u - 4 = 0 or u+1=0u + 1 = 0.

So, we get two possible solutions for uu:

u=4u = 4 or u=1u = -1.

Now, recall that u=(x5)2u = (x-5)^2, so we have:

(x5)2=4(x-5)^2 = 4 or (x5)2=1(x-5)^2 = -1.

For the second equation, (x5)2=1(x-5)^2 = -1, there are no real solutions because the square of any real number cannot be negative.

Now, let's solve the first equation, (x5)2=4(x-5)^2 = 4:

Taking the square root of both sides:

x5=±2x - 5 = \pm 2.

Now, we get two cases:

  1. x5=2x - 5 = 2: Adding 5 to both sides: x=2+5x = 2 + 5, x=7x = 7.

  2. x5=2x - 5 = -2: Adding 5 to both sides: x=2+5x = -2 + 5, x=3x = 3.

So, the solutions to the original equation are x=7x = 7 and x=3x = 3.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос