
Найти наибольшее решение


Ответы на вопрос

Введём замену: (x + (1/x)) = t.
t² = (x + (1/x))² = x² + 2x*(1/x)) + (1/x²) = x² + (1/x²) + 2.
Отсюда получаем x² + (1/x²) = t² - 2.
Исходное уравнение принимает вид 10t - 3(t² - 2) = 6 или
10t - 3t² + 6 = 6, откуда 10t - 3t² = 0 или t(10 - 3t) = 0.
Получаем 2 корня этого уравнения: t₁ = 0 t₂ = 10/3
Первый корень не выдерживает проверку при обратной замене.
Принимаем (x + (1/x)) =10/3.
Так как (x + (1/x)) = (x² + 1)/x, то по свойству пропорции получаем
3(x² + 1) = 10x, откуда получаем квадратное уравнение
3x² - 10x + 3 = 0, Д = 100 - 4*3*3 = 64.
Ответ:
х1 = (10 - 8)/6 = 2/6 = 1/3.
х2 = (10 + 8)/6 = 3.



К сожалению, в вашем вопросе не указано, какое уравнение или задачу следует решить. Для того чтобы я мог помочь вам найти наибольшее решение, укажите пожалуйста конкретное уравнение, задачу или контекст, с которым вы сталкиваетесь. Тогда я с радостью постараюсь предоставить вам соответствующий ответ или решение.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili