
Вопрос задан 12.07.2023 в 23:57.
Предмет Алгебра.
Спрашивает Чехунова Светлана.
Дано квадратное уравнение x2+6,8x+2,9=0, укажи сумму и произведение корней. x1+x2= ; x1⋅x2= .


Ответы на вопрос

Отвечает Егоров Даниил.
Ответ:
-6,8; 2,9
Пошаговое объяснение:
По теореме Виета для приведенного квадратного уравнения
{х1+х2=-b=-6,8
{x1x2=c=2,9



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для нахождения суммы и произведения корней квадратного уравнения x^2 + 6.8x + 2.9 = 0, мы можем использовать формулы Виета.
Для квадратного уравнения вида ax^2 + bx + c = 0, где a, b и c - это коэффициенты уравнения, сумма корней (x1 и x2) равна -b/a, а произведение корней равно c/a.
В нашем уравнении, a = 1, b = 6.8 и c = 2.9.
Сумма корней: x1 + x2 = -b/a = -6.8/1 = -6.8
Произведение корней: x1 * x2 = c/a = 2.9/1 = 2.9
Таким образом, сумма корней равна -6.8, а произведение корней равно 2.9.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili