
А) 3x2 - 12 = б) 2x2 - 98a2 = в) bx2 - 9b = г) -3a + 3p2a = д) 9x3 - 9a2x =


Ответы на вопрос

Ответ:
Объяснение:
a) 3x^-12 = 3(x^2-4) = 3(x-2)(x+2)
б) 2x^2 - 98a^2=2(x^2-49a^2) = 2(x-49a)(x+49a)
в)bx^2-9b=b(x-3)(x+3)
г) -3a+3p^2a=3a(-1+p^2)=3a(p-1)(p+1)
д) 9x^3-9a^2x=9x(x^2-a^2)= 9x(x-a)(x+a)



To solve each of the equations, let's go through them one by one:
a) 3x^2 - 12 = 0
To solve this quadratic equation, we can factor it: 3x^2 - 12 = 0 3(x^2 - 4) = 0 (x^2 - 4) = 0
Now, we have a difference of squares, which can be factored further: (x - 2)(x + 2) = 0
Setting each factor equal to zero: x - 2 = 0 or x + 2 = 0
Solving for x in each case: x = 2 or x = -2
Therefore, the solutions to the equation are x = 2 and x = -2.
b) 2x^2 - 98a^2 = 0
To solve this quadratic equation, we can factor out the common factor: 2(x^2 - 49a^2) = 0
Again, we have a difference of squares, which can be factored further: 2(x - 7a)(x + 7a) = 0
Setting each factor equal to zero: x - 7a = 0 or x + 7a = 0
Solving for x in each case: x = 7a or x = -7a
Therefore, the solutions to the equation are x = 7a and x = -7a.
c) bx^2 - 9b = 0
To solve this quadratic equation, we can factor out the common factor: b(x^2 - 9) = 0
Once again, we have a difference of squares: b(x - 3)(x + 3) = 0
Setting each factor equal to zero: x - 3 = 0 or x + 3 = 0
Solving for x in each case: x = 3 or x = -3
Therefore, the solutions to the equation are x = 3 and x = -3.
d) -3a + 3p^2a = 0
To solve this equation, we can factor out the common factor: -3a(1 - p^2) = 0
Setting each factor equal to zero: -3a = 0 or 1 - p^2 = 0
Solving for a in the first case: a = 0
Solving for p in the second case: 1 - p^2 = 0 p^2 = 1 p = ±1
Therefore, the solutions to the equation are a = 0 and p = ±1.
e) 9x^3 - 9a^2x = 0
To solve this equation, we can factor out the common factor: 9x(x^2 - a^2) = 0
We have a difference of squares, which can be factored further: 9x(x - a)(x + a) = 0
Setting each factor equal to zero: x - a = 0 or x + a = 0 or x = 0
Solving for x in each case: x = a or x = -a or x = 0
Therefore, the solutions to the equation are x = a, x = -a, and x = 0.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili