
Вопрос задан 11.07.2023 в 18:43.
Предмет Алгебра.
Спрашивает Волнухина Лиза.
Является ли пара чисел (1;1) решением системы уравнений {2x+3y=5 x^2+2y=3
Смотреть ответ А как это выяснить? решение volk1275 volk1275 Ответ: Нет (1;1) не является .

Ответы на вопрос

Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для выяснения, является ли пара чисел (1;1) решением системы уравнений, необходимо подставить значения x=1 и y=1 в оба уравнения и проверить их справедливость.
Первое уравнение: 2x + 3y = 5 2(1) + 3(1) = 2 + 3 = 5 Условие выполняется, так как левая часть равна правой: 5 = 5.
Второе уравнение: x^2 + 2y = 3 (1)^2 + 2(1) = 1 + 2 = 3 Условие также выполняется, так как левая часть равна правой: 3 = 3.
Поскольку оба уравнения выполняются при подстановке x=1 и y=1, можно сделать вывод, что пара чисел (1;1) является решением системы уравнений {2x+3y=5, x^2+2y=3}.
Таким образом, в противоречие с вашим ответом, пара чисел (1;1) является решением данной системы уравнений.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili