Вопрос задан 11.07.2023 в 02:04. Предмет Алгебра. Спрашивает Керимов Эмиль.

Представьте в виде многочлена выражение: (7x^4+18y^2)^2

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Антропов Николай.

\left(7x^4+18y^2\right)^2\\\\\left(a+b\right)^2=a^2+2ab+b^2\\a=7x^4,\:\:b=18y^2\\\\\left(7x^4+18y^2\right)^2 =\left(7x^4\right)^2+2\cdot \:7x^4\cdot \:18y^2+\left(18y^2\right)^2  =49x^8+252x^4y^2+324y^4

0 0
Отвечает Карпов Александр.

(7x⁴ + 18y²)² = (7x⁴)² + 2 7x⁴ 18y² + (18y²)² = 49x⁸ + 252x⁴y² + 324y⁴

Формулы:

(a + b)² = a² + 2ab + b²

(aᵇ)ⁿ = aᵇⁿ

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для представления данного выражения в виде многочлена, нужно выполнить операцию возведения в квадрат. Для этого умножим исходное выражение на само себя:

(7x^4 + 18y^2)^2 = (7x^4 + 18y^2) * (7x^4 + 18y^2)

Для выполнения умножения раскроем скобки, используя правило "FOIL" (First, Outer, Inner, Last):

(7x^4 + 18y^2) * (7x^4 + 18y^2) = 7x^4 * 7x^4 + 7x^4 * 18y^2 + 18y^2 * 7x^4 + 18y^2 * 18y^2

Теперь упростим каждое слагаемое:

  1. 7x^4 * 7x^4 = 49x^8 (при умножении степени складываются).
  2. 7x^4 * 18y^2 = 126x^4y^2 (при умножении степени x остается, а степени y складываются).
  3. 18y^2 * 7x^4 = 126x^4y^2 (аналогично предыдущему пункту).
  4. 18y^2 * 18y^2 = 324y^4 (при умножении степени складываются).

Теперь объединим все слагаемые:

(7x^4 + 18y^2)^2 = 49x^8 + 126x^4y^2 + 126x^4y^2 + 324y^4

Далее, если возможно, упростим выражение. В данном случае, слагаемые 126x^4y^2 и 126x^4y^2 можно объединить:

(7x^4 + 18y^2)^2 = 49x^8 + 2 * 126x^4y^2 + 324y^4

Итак, окончательное выражение в виде многочлена:

(7x^4 + 18y^2)^2 = 49x^8 + 252x^4y^2 + 324y^4

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос