Вопрос задан 08.07.2023 в 11:13. Предмет Алгебра. Спрашивает Евтушенко Илья.

Найдите значение выражения: 4a^2+8/a^3+1 - 4/a^2-a+1 - 1/a+1 при а=-0,4 ПОМОГИТЕ ПОЖАЛУЙСТА

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Грачёв Данил.

\dfrac{4a^2+8}{a^3+1}-\dfrac{4}{a^2-a+1}-\dfrac{1}{a+1}=\dfrac{4a^2+8}{(a+1)(a^2-a+1)}-\dfrac{4}{a^2-a+1}-\dfrac{1}{a+1}=\\\\\\=\dfrac{4a^2+8-4(a+1)-(a^2-a+1)}{(a+1)(a^2-a+1)}=\dfrac{3a^2-3a+3}{(a+1)(a^2-a+1)}=\\\\\\=\dfrac{3\, (a^2-a+1)}{(a+1)(a^2-a+1)}=\dfrac{3}{a+1}=\dfrac{3}{-0,4+1}=\dfrac{3}{0,6}=\dfrac{3\cdot 10}{6}=5

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Конечно, я помогу вам вычислить это выражение.

Выражение: 4a2+8a3+14a2a+11a+14a^2 + \frac{8}{a^3 + 1} - \frac{4}{a^2 - a + 1} - \frac{1}{a + 1}.

Заменим aa на 0,4-0,4:

Подставляем a=0,4a = -0,4 в каждый из членов:

  1. 4a2=4(0,4)2=0,644a^2 = 4 \cdot (-0,4)^2 = 0,64
  2. 8a3+1=8(0,4)3+1=80,064+1=80,9368,547\frac{8}{a^3 + 1} = \frac{8}{(-0,4)^3 + 1} = \frac{8}{-0,064 + 1} = \frac{8}{0,936} \approx 8,547
  3. 4a2a+1=4(0,4)2(0,4)+1=40,16+0,4+1=41,562,564\frac{4}{a^2 - a + 1} = \frac{4}{(-0,4)^2 - (-0,4) + 1} = \frac{4}{0,16 + 0,4 + 1} = \frac{4}{1,56} \approx 2,564
  4. 1a+1=10,4+1=10,6=106=53\frac{1}{a + 1} = \frac{1}{-0,4 + 1} = \frac{1}{0,6} = \frac{10}{6} = \frac{5}{3}

Теперь сложим и вычтем полученные значения:

0,64+8,5472,564536,623.0,64 + 8,547 - 2,564 - \frac{5}{3} \approx 6,623.

Итак, значение выражения при a=0,4a = -0,4 примерно равно 6,6236,623.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос