
2 cos (х - π/4) + √3 = 0.


Ответы на вопрос

х=/2cos +
/4
/ - дробная черта



To solve the equation , follow these steps:
Step 1: Subtract from both sides of the equation to isolate the cosine term:
Step 2: Divide both sides by 2 to isolate the cosine term:
Step 3: To find the values of that satisfy this equation, we need to find the angles whose cosine is . These angles are usually associated with the angles and , which are in the second and third quadrants, respectively.
Step 4: We can write the general solutions for :
Where is an integer representing the number of full rotations (360 degrees or radians) made.
Step 5: Solve for in both equations:
Step 6: Combine like terms:
Step 7: Simplify further:
These are the general solutions for that satisfy the given equation.
Please note that trigonometric equations can have an infinite number of solutions due to the periodic nature of trigonometric functions. The solutions provided above cover all possible values of that satisfy the equation.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili