
ПОМОГИТЕ!!! УМОЛЯЮ!!! Постройте график функции у = х2 – 6х – 7 и найдите: а) нули функции; б)
промежутки, на которых функции возрастает и убывает; в) промежутки, на которых функция принимает положительные и отрицательные значения; г) наименьшее значение функции.

Ответы на вопрос

Ответ:
а) нули функции: х = -1, х = 7;
б) промежутки, на которых функции возрастает и убывает:
от - ∞ до х = 3 убывает и на участке от х = 3 до + ∞ возрастает;
в) промежутки, на которых функция принимает положительные и отрицательные значения:
- функция положительная на участке от - ∞ до х = -1 и на участке от х = 7 до +∞;
- функция отрицательная на промежутке между нулями функции от х = -1 до х = 7;
г) наименьшее значение функции у = -16.
Объяснение:
1) Уравнение функции является приведённым.
Находим его корни:
х1,2 = +3 ± √ 9 -(-7) = 3 ± 4.
х1 = 7,
х2 = -1.
Проверяем полученные корни:
7 * (-1) = - 7 - равно свободному члену;
7 - 1 = 6 - равно второму коэффициенту, взятому с противоположным знаком.
Корни найдены верно.
Таким образом, нули функции:
х = -1 и х = 7.
2) Это значит, что график функции у = х2 – 6х – 7 пересекает ось х в точках х = -1 и х = 7.
3) Графиком данном функции является парабола (т.к. х^2), ветви которой направлены вверх (коэффициент при х^2 - положительный, а именно: +1), это значит, что:
- на участке от - ∞ до х = -1 - функция положительная;
- на промежутке между нулями функции от х = -1 до х = 7 - отрицательная;
- на участке от х = 7 до +∞ - положительная.
4) Наименьшим значением данной функции является координата y вершины параболы.
Координаты вершины параболы:
х = - b/2a = 6/2 = 3
y = c - b^2/4a = - 7 - (-6)^2/4 = - 7 - 9 = - 16.
Проверим полученные значения, для чего в первоначальное уравнение подставим вместо х его значение:
у = х2 – 6х – 7 = 3*3 - 6*3 - 7 = 9 - 18 - 7 = - 16; сходится с расчетом; значит, координаты вершины параболы найдены верно.
Поэтому есть все основания ответить на последние вопросы.
5) Функция убывает на участке от - ∞ до х = 3 и возрастает на участке от х = 3 до + ∞.
6) Наименьшее значение функции:
y = -16.
Ответ:
а) нули функции: х = -1, х = 7;
б) промежутки, на которых функции возрастает и убывает:
от - ∞ до х = 3 убывает и на участке от х = 3 до + ∞ возрастает;
в) промежутки, на которых функция принимает положительные и отрицательные значения:
- функция положительная на участке от - ∞ до х = -1 и на участке от х = 7 до +∞;
- функция отрицательная на промежутке между нулями функции от х = -1 до х = 7;
г) наименьшее значение функции у = -16.



Конечно, я помогу вам с этим. Давайте разберемся по порядку.
а) Чтобы найти нули функции, нужно найти значения , при которых . Уравнение можно решить с помощью квадратного корня или факторизации. Подставим 0 вместо :
Мы можем факторизовать это уравнение или использовать квадратное уравнение. Давайте воспользуемся квадратным уравнением:
Где в нашем случае , , и . Подставим значения и рассчитаем корни:
Таким образом, получаем два значения :
и .
Итак, нули функции равны и .
б) Чтобы определить промежутки возрастания и убывания функции, нужно найти значения , при которых производная функции положительна (функция возрастает) и отрицательна (функция убывает). Посчитаем производную:
Производная равна . Чтобы найти значения , при которых положительна и отрицательна:
Значит, функция возрастает на интервале .
Значит, функция убывает на интервале .
в) Для определения промежутков, на которых функция принимает положительные и отрицательные значения, можно рассмотреть знак самой функции . Мы уже видели, что нули функции находятся в точках и . Возьмем точки из каждого интервала:
Выберем , который находится между -1 и 7. Таким образом, функция отрицательна на интервале (-1, 7).
Выберем , который больше 7. Таким образом, функция положительна на интервале (7, ∞).
г) Наименьшее значение функции можно найти в вершине параболы. Вершина параболы с координатами имеет координату . В нашем случае и :
Теперь подставим в уравнение функции: