Вопрос задан 01.07.2023 в 17:27. Предмет Алгебра. Спрашивает Андреева Юля.

5. Освободитесь от иррациональности в знаменателе дроби: 22/3√5

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Kozeachina Arina.

Ответ:

\frac{22\sqrt{5}}{15}

Объяснение:

\frac{a}{b}=\frac{a*n}{b*n}; n\neq0;

\frac{22}{3\sqrt{5}}=\frac{22*\sqrt{5}}{3\sqrt{5}*\sqrt{5}}=\frac{22\sqrt{5}}{3*5}=\frac{22\sqrt{5}}{15};

0 0
Отвечает Колодяжный Евгений.

Ответ:

\frac{22}{3\sqrt{5} } =\frac{22*3\sqrt{5} }{3\sqrt{5*3\sqrt{5} } } =\frac{22*3\sqrt{5} }{45}

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для того чтобы освободиться от иррациональности в знаменателе дроби, нужно рационализировать её. В данном случае у нас есть знаменатель вида 3√5, что означает кубический корень из 5, так как степень знаменателя равна 3.

Чтобы рационализировать этот знаменатель, нужно умножить как числитель, так и знаменатель дроби на подходящий множитель, который исключит иррациональность в знаменателе. Для этого мы можем умножить и числитель, и знаменатель на кубический корень из 5:

plaintext
22 / 3√5 * (√5 / √5) = 22√5 / 3 * 5 = 22√5 / 15

Таким образом, после рационализации знаменателя, дробь будет иметь вид 22√5 / 15.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос