Вопрос задан 29.06.2023 в 01:21. Предмет Алгебра. Спрашивает Шибаков Александр.

Рыболов в 5 часов утра на моторной лодке отправился от пристани против течения реки,через некоторое

время бросил якорь,2 часа ловил и вернулся обратно в 10 часов утра того же дня. На какое расстояние от пристани он отплыл,если скорость течения реки равна 4 км ч,а собственная скорость лодки равна 6 км?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Браславец Данил.

Ответ:

6-2=4(скорость против течения)

6+2=8(скорость по течению)

x:4+x:8=3 |•8(типа умножаем всё на 8 чтобы не мучиться)

2x+x=24

3x=24 |:3

x=8

0 0
Отвечает Aliyeva Ayka.

Ответ:

6-2=4(скорость против течения)

6+2=8(скорость по течению)

x:4+x:8=3 |•8(типа умножаем всё на 8 чтобы не мучиться)

2x+x=24

3x=24 |:3

x=8

Объяснение:

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы решить эту задачу, мы можем использовать формулу для расстояния, времени и скорости:

Расстояние = Скорость × Время

Давайте обозначим расстояние, которое рыболов отплыл от пристани, как D (в километрах). Сначала давайте определим, какое расстояние он преодолел против течения реки.

Собственная скорость лодки = 6 км/ч Скорость течения реки = 4 км/ч

Против течения реки рыболов двигался со скоростью (6 - 4) км/ч = 2 км/ч.

Он двигался вверх по реке (против течения) в течение некоторого времени. Мы знаем, что он отправился в 5 утра и вернулся в 10 утра, что означает, что он плавал в течение 5 часов.

Теперь мы можем использовать формулу, чтобы вычислить расстояние, которое он преодолел против течения:

Расстояние = Скорость × Время Расстояние = 2 км/ч × 5 ч = 10 км

Таким образом, рыболов отплыл от пристани на расстояние 10 километров против течения реки.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Алгебра 4 Лисов Андрей

Последние заданные вопросы в категории Алгебра

Задать вопрос