Вопрос задан 28.06.2023 в 18:49. Предмет Алгебра. Спрашивает Константинопольская Алина.

Срочно!!! Помогите!!!! докажите, что значение выражения (1 / 2 корень из 3 + 1) - (1 / 2 корень из

3 - 1) есть число рациональное ​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Басырова Амина.

Ответ:

а можно ты напишешь как надо или фото?

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте разберемся с этим выражением:

(1 / (2√3 + 1)) - (1 / (2√3 - 1))

Чтобы показать, что это число рациональное, давайте найдем общий знаменатель для обоих слагаемых в выражении. Для этого умножим первое слагаемое на (2√3 - 1) и второе слагаемое на (2√3 + 1):

[(1 / (2√3 + 1)) * (2√3 - 1)] - [(1 / (2√3 - 1)) * (2√3 + 1)]

Теперь у нас есть общий знаменатель, который равен (2√3 + 1)(2√3 - 1), и мы можем упростить выражение:

[(1 * (2√3 - 1)) - (1 * (2√3 + 1))] / ((2√3 + 1)(2√3 - 1))

Раскроем скобки:

(2√3 - 1 - 2√3 - 1) / ((2√3 + 1)(2√3 - 1))

Сократим подобные члены:

(-1 - 1) / ((2√3 + 1)(2√3 - 1))

-2 / ((2√3 + 1)(2√3 - 1))

Теперь видно, что выражение -2 является рациональным числом, так как оно может быть представлено как отношение двух целых чисел (2 и 1). Таким образом, значение данного выражения является рациональным числом.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос