
3х + 2y = 8, у – 2x = -3 и х— 2y = 0, 3у-*х=-1 * =


Ответы на вопрос

Ответ:
3х-2у=1
x-2y=0
qweyeyeywywyeyyeryr



To solve this system of equations, you can use the method of substitution or elimination. Let's use the elimination method to find the values of x and y.
The system of equations is:
- 3x + 2y = 8
- y - 2x = -3
- x - 2y = 0
- 3y - x = -1
We can start by eliminating one variable from each pair of equations:
From equations (2) and (3), let's eliminate x:
- y - 2x = -3
- x - 2y = 0
To eliminate x, multiply equation (2) by 3 and equation (3) by 2 so that the coefficients of x will cancel each other:
- 3(y - 2x) = 3(-3)
- 2(x - 2y) = 2(0)
This simplifies to:
- 3y - 6x = -9
- 2x - 4y = 0
Now, let's add equations (6) and (7) to eliminate x:
(3y - 6x) + (2x - 4y) = (-9) + 0
This simplifies to:
3y - 6x + 2x - 4y = -9
Combine like terms:
(3y - 4y) + (-6x + 2x) = -9
-y - 4x = -9
Now, let's isolate y:
-y = -9 + 4x
Multiply both sides by -1 to solve for y:
y = 9 - 4x
Now that we have the value of y, we can substitute it into one of the original equations to find the value of x. Let's use equation (1):
- 3x + 2y = 8
Substitute the expression for y:
3x + 2(9 - 4x) = 8
Now, solve for x:
3x + 18 - 8x = 8
Combine like terms:
-5x + 18 = 8
Subtract 18 from both sides:
-5x = 8 - 18 -5x = -10
Now, divide by -5 to find the value of x:
x = -10 / -5 x = 2
So, the solution to the system of equations is:
x = 2 y = 9 - 4x y = 9 - 4(2) y = 9 - 8 y = 1
The values of x and y are:
x = 2 y = 1


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili