Вопрос задан 28.06.2023 в 02:50. Предмет Алгебра. Спрашивает Косячко Диана.

Найдите значение выражения (23^-12)^2 * (23^-8)^-3 =

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Федина Арина.

Ответ:

В решении.

Объяснение:

Найдите значение выражения

(23⁻¹²)² * (23⁻⁸)⁻³ =

=23⁻²⁴ * 23²⁴ = 1/23²⁴ * 23²⁴ = 23²⁴/23²⁴ = 1.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для вычисления данного выражения, мы можем использовать свойства степеней с одинаковым основанием. В данном случае основание равно 23.

(23^-12)^2 * (23^-8)^-3

Сначала вычислим каждое из отдельных выражений в скобках:

  1. (23^-12)^2 = 23^(-12 * 2) = 23^(-24)

  2. (23^-8)^-3 = 23^(-8 * -3) = 23^(24)

Теперь, используя свойства степеней, перемножим эти два выражения:

23^(-24) * 23^(24) = 23^(-24 + 24) = 23^0

По определению, любое число, возведенное в степень 0, равно 1. Таким образом:

23^0 = 1

Итак, значение данного выражения равно 1.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Алгебра 4 Лисов Андрей

Последние заданные вопросы в категории Алгебра

Задать вопрос