
2√3cos2·(3π/2+x/2)=sinx


Ответы на вопрос




To solve the trigonometric equation 2√3cos^2(3π/2 + x/2) = sin(x), you can follow these steps:
- Rewrite the trigonometric functions in terms of basic trigonometric identities.
Start by using the identity cos(3π/2 + θ) = -sin(θ) to rewrite the left side of the equation:
2√3(-sin(x/2)) = sin(x)
- Eliminate the radical on the left side by squaring both sides of the equation:
[2√3(-sin(x/2))]^2 = sin^2(x)
12(sin^2(x/2)) = sin^2(x)
- Use the double angle identity for sine to express sin^2(x/2) in terms of sin(x):
12(1 - cos(x))/2 = sin^2(x)
6(1 - cos(x)) = sin^2(x)
- Rearrange the equation to isolate sin(x):
6 - 6cos(x) = sin^2(x)
sin^2(x) + 6cos(x) - 6 = 0
- Now, you have a quadratic equation in sin(x). You can solve it by substituting u = sin(x) to get:
u^2 + 6u - 6 = 0
- Solve the quadratic equation for u (sin(x)) using the quadratic formula:
u = [-b ± √(b^2 - 4ac)] / (2a)
In this case, a = 1, b = 6, and c = -6:
u = [-6 ± √(6^2 - 4(1)(-6))] / (2(1))
u = [-6 ± √(36 + 24)] / 2
u = [-6 ± √60] / 2
u = [-6 ± 2√15] / 2
u = -3 ± √15
So, sin(x) can have two values:
sin(x) = -3 + √15 sin(x) = -3 - √15
- Now, you can find the values of x by taking the inverse sine (arcsin) of these values:
For sin(x) = -3 + √15:
x = arcsin(-3 + √15)
For sin(x) = -3 - √15:
x = arcsin(-3 - √15)
Note that the solutions will depend on the domain of x you are interested in, typically between 0 and 2π or -π and π for periodic solutions.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili