Вопрос задан 25.06.2023 в 02:10. Предмет Алгебра. Спрашивает Максименко Аня.

Упростите выражение дробь, числитель — 3{{b} в степени 2 } плюс 2b, знаменатель — {{b в степени 2 }

минус 4} минус дробь, числитель — b, знаменатель — b минус 2 и найдите его значение при b=0,2.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Шубанова Елизавета.

На картинке все ясно


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте упростим данное выражение:

Выражение: (3b^2 + 2b) / (b^2 - 4) - (b / (b - 2))

Сначала упростим знаменатель в обоих дробях:

  1. Знаменатель первой дроби можно факторизовать как (b^2 - 4) = (b - 2)(b + 2).
  2. Знаменатель второй дроби уже факторизован и равен (b - 2).

Теперь выразим общий знаменатель для обеих дробей:

Общий знаменатель = (b - 2)(b + 2).

Теперь приведем обе дроби к общему знаменателю:

(3b^2 + 2b) / (b - 2)(b + 2) - (b / (b - 2))

Теперь вычитаем одну дробь из другой:

[(3b^2 + 2b) - (b(b + 2))] / (b - 2)(b + 2)

Раскроем скобки в числителе:

(3b^2 + 2b - b^2 - 2b) / (b - 2)(b + 2)

Теперь упростим числитель:

(2b^2) / (b - 2)(b + 2)

Теперь вычислим значение выражения при b = 0,2:

(2(0,2)^2) / (0,2 - 2)(0,2 + 2)

(2(0,04)) / (-1,8)(2,2)

(0,08) / (-3,96)

Ответ: Значение выражения при b = 0,2 равно примерно -0,0202.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос