
№ 6. Доведіть, що різниця квадратів двох послідовних цілих чисел є непарним числом СРОЧНО ДАЮ 20
БАЛЛОВ!!!

Ответы на вопрос

Среди двух последовательных чисел обязательно имеется число чётное и число нечётное.
Чётное число в квадрате остаётся чётным, нечётное – нечётным.
Разность нечётного и чётного числа есть число нечётное. Разность чётного и нечётного числа – аналогично, число нечётное.



Щоб довести, що різниця квадратів двох послідовних цілих чисел є непарним числом, скористаємося властивістю парних і непарних чисел.
Припустимо, що наші два послідовних числа - n і n+1.
Тоді їх квадрати будуть n^2 і (n+1)^2.
Різниця цих квадратів буде:
Розкриємо квадрат доданка :
Тепер візьмемо різницю:
Ми бачимо, що результат є сумою парного числа (2n) і непарного числа (1). Згідно з властивістю арифметичних операцій, сума парного і непарного числа завжди є непарним числом.
Отже, різниця квадратів двох послідовних цілих чисел завжди є непарним числом.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili