Вопрос задан 24.06.2023 в 18:35. Предмет Алгебра. Спрашивает Акетай Аружан.

упрастите выражение sin65°cos20°-cos70°sin25°/cos63°cos3°+cos87°cos27 люди добрые срочно надо! даю

50 БАЛЛОВ​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кучура Таня.

-------------------------------


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Рассмотрим данное выражение по частям:

  1. sin(65°)cos(20°) - cos(70°)sin(25°): Используем тригонометричные тождества для разности углов: sin(A - B) = sin(A)cos(B) - cos(A)sin(B)

    Заменим A на 65° и B на 20°: sin(65° - 20°) = sin(45°) = √2 / 2

  2. cos(63°)cos(3°) + cos(87°)cos(27°): Используем тригонометричные тождества для суммы углов: cos(A + B) = cos(A)cos(B) - sin(A)sin(B)

    Заменим A на 63° и B на 3°: cos(63° + 3°) = cos(66°)

    Теперь заменим A на 87° и B на 27°: cos(87° + 27°) = cos(114°)

Теперь объединим результаты:

(√2 / 2) - cos(66°) / cos(114°)

Теперь можно упростить дробь, поделив обе части на cos(114°):

(√2 / 2cos(114°)) - 1

Это упрощенное выражение. Вы можете вычислить численное значение, если необходимо.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос