
При каких значениях t уравнение 2y² + ty+ 1 = 0 не имеет
действительных корней? В ответе запиши сумму натуральных значений t, удовлетворяющих условию.Ответ:.

Ответы на вопрос

Ответ:
Сумма всех натуральных t = 3.
Объяснение:
Действителельных корней не будет, если D < 0 =>
Приравниваем t к нулю, строим числовую прямую, выбираем только натуральные числа, удовлетворяющие условию, и получаем t = 0, 1, 2



Условие, при котором уравнение не имеет действительных корней, можно найти, используя дискриминант. Дискриминант для квадратного уравнения равен . Если , то уравнение не имеет действительных корней.
В данном случае, , , и . Подставим эти значения в формулу дискриминанта:
Теперь условие :
Добавим 8 к обеим сторонам:
Чтобы было меньше 8, должно быть в интервале , так как .
Таким образом, должно удовлетворять условию .
Теперь найдем натуральные значения в этом интервале:
- Наименьшее натуральное число, удовлетворяющее этому условию, это 1.
- Наибольшее натуральное число, удовлетворяющее этому условию, это 2.
Сумма натуральных значений , удовлетворяющих условию, равна 1 + 2 = 3.
Итак, сумма натуральных значений , при которых уравнение не имеет действительных корней, равна 3.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili