Вопрос задан 22.06.2023 в 07:14. Предмет Алгебра. Спрашивает Бакланов Никита.

Разность двух чисел равна 15. Если большее число уменьшить на 10%, а меньшее увеличить на 20%, то

их сумма будет равна 171. Найдите эти числа.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Alibekov Ernur.

Ответ:

большее число = 90; меньшее число = 75

Объяснение:

пусть x - большее число, а y - меньшее.

Тогда составим систему уравнений:\left \{ {{x-y=15} \atop {(x-x(prc)*10)(y+y(prc)*20)=171}} \right.

(prc) - знак %.

x%*10 - 10 процентов от x.

y%*20 - 20 процентов от y.

решаем верхнее уравнение x = 15 + y

подставляем значение x в нижнее уравнение (15 + y-(15+y)(prc)*10)+(y+y(prc)*20)=171

решаем это уравнение как стандартное линейное уравнение y = 75

подставляем значение y в первое уравнение x = 15+ 75

И получаем, что x = 90, y = 75/

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Пусть x - это большее число, а y - меньшее число. Тогда у нас есть два уравнения:

  1. xy=15x - y = 15 (разность равна 15)
  2. 0.9x+1.2y=1710.9x + 1.2y = 171 (большее уменьшено на 10%, меньшее увеличено на 20%, их сумма равна 171)

Теперь решим эту систему уравнений.

Из уравнения 1 выразим x через y: x=y+15x = y + 15

Подставим это в уравнение 2:

0.9(y+15)+1.2y=1710.9(y + 15) + 1.2y = 171

Решаем уравнение:

0.9y+13.5+1.2y=1710.9y + 13.5 + 1.2y = 171

2.1y+13.5=1712.1y + 13.5 = 171

2.1y=157.52.1y = 157.5

y=75y = 75

Теперь найдем x, подставив значение y в уравнение 1:

x=75+15=90x = 75 + 15 = 90

Итак, большее число (x) равно 90, а меньшее число (y) равно 75.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос