Вопрос задан 20.06.2023 в 13:31. Предмет Алгебра. Спрашивает Гапоненко Настя.

Сума двох натуральних чисел дорівнюе 352. Якщо до меншого числа приписати справа нуль, то вийде

більше число. Знайти це число.​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Панченко Даниил.

Ответ:

Пусть меньшее число х, тогда большее будет равно 10х (приписать справа 0 - это значит увеличить число в 10 раз). Т. к. их сумма равна 352, то составим и решим уравнение:

х + 10х = 352,

11х = 352,

х = 352 : 11,

х = 32.

Значит, меньшее число 32, а большее 320.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте розв'яжемо цю задачу крок за кроком. Нехай менше число з цієї суми буде \(x\), а більше число буде \(y\).

Тоді маємо такі умови:

1. \(x + y = 352\) 2. Якщо до меншого числа \(x\) приписати справа нуль, то вийде більше число \(y\).

Давайте розглянемо першу умову:

\[x + y = 352\]

Тепер давайте розберемо другу умову. Якщо до \(x\) приписати справа нуль, це стане \(10x\). Якщо це число \(10x\) буде більше за \(y\), то ми матимемо наступне:

\[10x > y\]

Отже, у нас є система нерівностей:

\[\begin{cases} x + y = 352 \\ 10x > y \end{cases}\]

Ми можемо вирішити цю систему, поєднавши обидві умови. Підставимо \(y = 352 - x\) з першої умови в другу:

\[10x > 352 - x\]

Тепер розв'яжемо нерівність:

\[10x + x > 352\] \[11x > 352\] \[x > \frac{352}{11}\] \[x > 32\]

Отже, ми знайшли, що \(x\) (менше число) повинно бути більше за 32. Але тепер давайте перевіримо, які числа задовольнять обидві умови.

Якщо \(x = 33\), то \(y = 352 - 33 = 319\).

Тепер перевіримо, чи виконується умова \(10x > y\):

\(10 \times 33 = 330\)

Таким чином, \(10x = 330\), що більше за \(y = 319\).

Тому, коли менше число \(x = 33\), а більше число \(y = 319\), умови задачі виконані.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос