
Даю 100 баллов!!! Решите квадратные уравнения 7x^2+28=0 x^2+2x=0 6x^2-12=0 x^2-2x=0 121-x^2=0
x^2-21=0 Помогите пж, дам лучший!!!

Ответы на вопрос

Ответ:
1) нет корней
2) x = 0, x = -2
3) x = , x = -
4) x = 0, x = 2
5) x = 11, x = -11
6) x = , x = -
Объяснение:
1)
7x^2+28=0
7 * ( + 4) = 0
+ 4 = 0
= -4
Квадрат не может принимать отрицательные значения, значит уравнение не имеет корней.
2)
x^2+2x=0
х * (х + 2) = 0
x = 0 x = -2
3)
6x^2-12=0
6 * ( - 2) = 0
- 2 = 0
= 2
x = x = -
4)
x^2-2x=0
x*(x - 2) = 0
x = 0 x - 2 = 0
x = 2
5)
121-x^2=0
= 121
x = ±
x = 11 x = -11
6)
x^2-21=0
= 21
x = ±
x = x = -



решение смотри на фото/////////////




Solving Quadratic Equations
Let's solve the given quadratic equations one by one.
1. Equation: 7x^2 + 28 = 0
To solve this equation, we can start by subtracting 28 from both sides of the equation:
7x^2 = -28
Next, we divide both sides of the equation by 7 to isolate x^2:
x^2 = -4
Taking the square root of both sides, we get:
x = ±√(-4)
Since the square root of a negative number is not a real number, this equation has no real solutions.
2. Equation: x^2 + 2x = 0
To solve this equation, we can factor out x:
x(x + 2) = 0
This equation will be true if either x = 0 or x + 2 = 0. Solving for x in each case, we get:
x = 0 or x = -2
So, the solutions to this equation are x = 0 and x = -2.
3. Equation: 6x^2 - 12 = 0
To solve this equation, we can start by adding 12 to both sides of the equation:
6x^2 = 12
Next, we divide both sides of the equation by 6 to isolate x^2:
x^2 = 2
Taking the square root of both sides, we get:
x = ±√2
So, the solutions to this equation are x = √2 and x = -√2.
4. Equation: x^2 - 2x = 0
To solve this equation, we can factor out x:
x(x - 2) = 0
This equation will be true if either x = 0 or x - 2 = 0. Solving for x in each case, we get:
x = 0 or x = 2
So, the solutions to this equation are x = 0 and x = 2.
5. Equation: 121 - x^2 = 0
To solve this equation, we can start by subtracting 121 from both sides of the equation:
-x^2 = -121
Next, we multiply both sides of the equation by -1 to change the sign:
x^2 = 121
Taking the square root of both sides, we get:
x = ±√121
Simplifying, we have:
x = ±11
So, the solutions to this equation are x = 11 and x = -11.
6. Equation: x^2 - 21 = 0
To solve this equation, we can start by adding 21 to both sides of the equation:
x^2 = 21
Taking the square root of both sides, we get:
x = ±√21
So, the solutions to this equation are x = √21 and x = -√21.
I hope this helps! Let me know if you have any further questions.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili