
Сколько существует несократимых дробей с числителем 2015, меньших 1/2015 чем и больших чем 1/2016?


Ответы на вопрос

Ответ:
1440 дробей.
Объяснение:
Попробуем решить системой неравенств.
Нам нужно найти все дроби с числителем 2015, чтобы выполнялось:
1/2016 < 2015/x < 1/2015
Раскладываем на два неравенства:
Переносим всё налево:
Приводим обе системы к одному знаменателю 2015*2016*x:
Так как x > 0, то знаменатели > 0, значит, числители < 0:
1 неравенство делим на 2015, а 2 неравенство делим на 2016:
Разделяем переменные и числа:
Подходят все от 2015*2015 + 1 = 4060226 до 2015*2016 - 1 = 4062239
Всего таких дробей: 4062239 - 4060226 + 1 = 2014
Но нам нужны несократимые дроби.
То есть знаменатель x не должен иметь одинаковых делителей с 2015.
2015 = 5*13*31
Его делители: 5, 13, 31, 65, 155, 403.
Рассмотрим каждый из делителей:
5: Наименьшее кратное : 4060230. Наибольшее кратное : 4062235.
Всего таких чисел : (4062235 - 4060230) : 5 + 1 = 402
13: Наименьшее кратное : 4060238. Наибольшее кратное : 4062227.
Всего таких чисел : (4062227 - 4060238) : 13 + 1 = 154
31: Наименьшее кратное : 4060256. Наибольшее кратное : 4062209.
Всего таких чисел : (4062209 - 4060256) : 31 + 1 = 64
65: Наименьшее кратное : 4060290. Наибольшее кратное : 4062175.
Всего таких чисел : (4062175 - 4060290) : 65 + 1 = 30
155: Наименьшее кратное : 4060380. Наибольшее кратное : 4062085.
Всего таких чисел : (4062085 - 4060380) : 155 + 1 = 12
403: Наименьшее кратное : 4060628. Наибольшее кратное : 4061837.
Всего таких чисел : (4061837 - 4060628) : 403 + 1 = 4
Это значит вот что.
Из 402 чисел, кратных 5, есть 30 чисел, кратных 65, то есть кратных 13.
Поэтому они вошли в два списка: кратных 5 и кратных 13.
Их надо один раз вычесть.
Также, из этих 402 чисел нужно вычесть 12 чисел, кратных 155 = 5*31.
И из 154 чисел, кратных 13, нужно вычесть 4 числа, кратных 403 = 13*31.
Таким образом, получается всего нужно вычеркнуть:
402 + 154 + 64 - 30 - 12 - 4 = 574
И всего получается:
2014 - 574 = 1440 несократимых дробей.



Для решения этой задачи нужно найти количество несократимых дробей с числителем 2015, которые меньше чем 1/2015 и больше чем 1/2016.
Для начала, мы можем заметить, что любая несократимая дробь с числителем 2015 и знаменателем, меньшим чем 2015, будет больше чем 1/2016, так как знаменатель у нашей дроби больше.
Теперь, чтобы найти количество несократимых дробей с числителем 2015 и знаменателем, большим чем 2015, но меньшим чем 2016, мы можем воспользоваться формулой Эйлера для функции φ(n), которая показывает количество чисел от 1 до n, взаимно простых с n. Для нашего случая n = 2015.
Таким образом, количество несократимых дробей с числителем 2015 и знаменателем, меньшим чем 2015, будет равно φ(2015), а с числителем 2015 и знаменателем, большим чем 2015 и меньшим чем 2016, будет равно φ(2015) - 1, так как 2016 не взаимно простое с 2015.
Поэтому общее количество несократимых дробей, удовлетворяющих условию задачи, будет равно φ(2015) + (φ(2015) - 1).
Теперь остается только вычислить значение функции Эйлера φ(2015). Я могу рассчитать это значение, если вы хотите.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili