
Log4^2(x)-3log4(x)=3^(log3(4))


Ответы на вопрос

(log3)(log3+logx)=(log4)(log4+logy)and(logx)(log4)=(logy)(log3)
logy=log4log3logx
(log3)(log3+logx)=(log4)(log4+log4log3logx)
(log3−(log4)2log3)logx=(log4)2−(log3)2
logxlog3=−1
logx=−log3=log(1/3), so that x=1/3.



To solve the equation log₄²(x) - 3log₄(x) = 3^(log₃(4)), we can simplify the terms and apply some logarithmic properties.
Let's break it down step by step:
Rewrite 3^(log₃(4)) using the change of base formula: 3^(log₃(4)) = 4^(log₄(3))
Apply the power rule of logarithms to rewrite the equation: log₄²(x) - log₄(x)³ = 4^(log₄(3))
Combine the logarithmic terms on the left side using the quotient rule of logarithms: log₄²(x) - 3log₄(x) = 4^(log₄(3))
Apply the power rule of logarithms to rewrite the left side: log₄(x²) - log₄(x³) = 4^(log₄(3))
Combine the logarithmic terms on the left side using the quotient rule of logarithms: log₄(x²/x³) = 4^(log₄(3))
Simplify the left side by dividing x² by x³: log₄(1/x) = 4^(log₄(3))
Apply the logarithmic property to rewrite log₄(1/x): log₄(1) - log₄(x) = 4^(log₄(3))
Simplify log₄(1) to 0: 0 - log₄(x) = 4^(log₄(3))
Rearrange the equation: -log₄(x) = 4^(log₄(3))
Apply the exponential property to both sides: 4^(-log₄(x)) = 3
Rewrite the left side using the reciprocal property: 1/(4^log₄(x)) = 3
Apply the logarithmic property to rewrite 4^log₄(x): 1/x = 3
Multiply both sides by x to isolate x: x = 1/3
Therefore, the solution to the equation log₄²(x) - 3log₄(x) = 3^(log₃(4)) is x = 1/3.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili