
Катер прошел 36 км по течению и 60 км по озеру, затратив на весь путь 5 ч. Скорость течения реки
равна 2 км/ч. Найдите скорость катера по течению.

Ответы на вопрос

Ответ:
≈20,5 км/ч.
Объяснение:
Пусть собственная скорость катера х км/ч, тогда его скорость по течению х+2 км/ч.
36/(х+2) + 60/х = 5
36х+60х+120-5х²-10х=0
5х²-86х-120=0
х=(86±√(7396+2400))/10=(86±√9796)/10≈(86±99)/10
х≈-1,3 (не подходит) х≈18,5
Скорость катера по течению ≈18,5+2≈20,5 км/ч.



Problem Analysis
We are given that a boat traveled 36 km upstream and 60 km downstream, taking a total of 5 hours for the entire journey. The speed of the river current is given as 2 km/h. We need to find the speed of the boat in still water.Solution
Let's assume the speed of the boat in still water is v km/h.When the boat is traveling upstream (against the current), its effective speed is reduced by the speed of the current. So, the boat's speed relative to the ground is (v - 2) km/h.
When the boat is traveling downstream (with the current), its effective speed is increased by the speed of the current. So, the boat's speed relative to the ground is (v + 2) km/h.
We can use the formula distance = speed × time to calculate the time taken for each leg of the journey.
The time taken to travel 36 km upstream is given by: 36 = (v - 2) × t1 The time taken to travel 60 km downstream is given by: 60 = (v + 2) × t2 We also know that the total time for the journey is 5 hours: t1 + t2 = 5 We can solve this system of equations to find the value of v.
Calculation
Let's solve the system of equations and.From equation 36 = (v - 2) × t1
From equation 60 = (v + 2) × t2
From equation t1 + t2 = 5
We can rewrite equation as: t1 = 36 / (v - 2)
We can rewrite equation as: t2 = 60 / (v + 2)
Substituting the values of t1 and t2 in equation 36 / (v - 2) + 60 / (v + 2) = 5
To solve this equation, we can multiply through by (v - 2)(v + 2) to eliminate the denominators: 36(v + 2) + 60(v - 2) = 5(v - 2)(v + 2)
Expanding and simplifying: 36v + 72 + 60v - 120 = 5(v^2 - 4)
Simplifying further: 96v - 48 = 5v^2 - 20
Rearranging the equation: 5v^2 - 96v + 68 = 0
We can solve this quadratic equation using the quadratic formula: v = (-b ± √(b^2 - 4ac)) / (2a)
For our equation, a = 5, b = -96, and c = 68.
Substituting the values into the quadratic formula: v = (-(-96) ± √((-96)^2 - 4 * 5 * 68)) / (2 * 5)
Simplifying: v = (96 ± √(9216 - 1360)) / 10
v = (96 ± √7856) / 10
Calculating the square root of 7856: √7856 ≈ 88.57
Substituting the value into the equation: v = (96 ± 88.57) / 10
We have two possible solutions: 1. v = (96 + 88.57) / 10 ≈ 18.86 2. v = (96 - 88.57) / 10 ≈ 7.43
Since the speed of the boat cannot be negative, the speed of the boat in still water is approximately 18.86 km/h.
Answer
The speed of the boat in still water is approximately 18.86 km/h.

Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili