
1. Моторная лодка прошла 45 км по течению реки и столько же против течения
затратив всего 14 часов. Найдите скорость лодки в стоячей воде, если скорость течения реки равна 2 км/ч. 

Ответы на вопрос

45/(х + 2) + 45/(х - 2) = 14;
45(х - 2) + 45(х + 2) = 14(х^2 - 4);
45х - 90 + 45х + 90 = 14х^2 - 56;
14х^2 - 90х - 56 = 0;
7х^2 - 45х - 28 = 0;
D = 45^2 - 4 * 7 * (-28) = 2809; √D = 53;
х1 = (45 + 53)/14 = 7 (км/ч);
х2 = (45 - 53)/14 = -8/14 - скорость не может быть отрицательной.
Ответ. 7 км/ч.
не спалитесь



Problem Analysis
We are given that a motorboat traveled 45 km downstream (with the current) and the same distance upstream (against the current), taking a total of 14 hours. We need to find the speed of the boat in still water, given that the speed of the river current is 2 km/h.Solution
Let's assume the speed of the boat in still water is x km/h. Since the boat is traveling both downstream and upstream, we can use the formula:Distance = Speed × Time
For the downstream journey, the boat's effective speed is the sum of its speed in still water and the speed of the current, which is (x + 2) km/h. The distance traveled downstream is 45 km. Therefore, the time taken for the downstream journey is:
45 km = (x + 2) km/h × Time
For the upstream journey, the boat's effective speed is the difference between its speed in still water and the speed of the current, which is (x - 2) km/h. The distance traveled upstream is also 45 km. Therefore, the time taken for the upstream journey is:
45 km = (x - 2) km/h × Time
Since the total time taken for both journeys is 14 hours, we can write the equation:
Time downstream + Time upstream = 14 hours
Substituting the expressions for the times from the previous equations, we get:
(45 km) / (x + 2) km/h + (45 km) / (x - 2) km/h = 14 hours
To solve this equation, we can multiply both sides by (x + 2)(x - 2) to eliminate the denominators:
45(x - 2) + 45(x + 2) = 14(x + 2)(x - 2)
Simplifying the equation:
45x - 90 + 45x + 90 = 14(x^2 - 4)
90x = 14x^2 - 56
14x^2 - 90x - 56 = 0
Now we can solve this quadratic equation for x using the quadratic formula:
x = (-b ± √(b^2 - 4ac)) / (2a)
where a = 14, b = -90, and c = -56.
Calculating the values:
x = (-(-90) ± √((-90)^2 - 4 * 14 * (-56))) / (2 * 14)
x = (90 ± √(8100 + 3136)) / 28
x = (90 ± √11236) / 28
x = (90 ± 106) / 28
So, we have two possible solutions for x:
x = (90 + 106) / 28 = 196 / 28 = 7 km/h
x = (90 - 106) / 28 = -16 / 28 = -0.57 km/h
Since the speed of the boat cannot be negative, we can conclude that the speed of the boat in still water is 7 km/h.
Answer
The speed of the motorboat in still water is 7 km/h.

Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili