
|х-1|+|х+2|-|х-3|+4 помогите пожалуста срочно!!!!!! за полное обяснение 100 балов


Ответы на вопрос

Ответ:
|x-1| это ровно к 0,01 и т.д



Solving the Absolute Value Equation
To solve the absolute value equation |x-1| + |x+2| - |x-3| + 4, we'll need to consider different cases based on the values of x that make the expressions inside the absolute value bars positive or negative.1. Case 1: x < 1 When x < 1, the expressions inside the absolute value bars become negative.
2. Case 2: 1 ≤ x < -2 When 1 ≤ x < -2, the expressions inside the absolute value bars become positive, negative, and positive, respectively.
3. Case 3: -2 ≤ x < 3 When -2 ≤ x < 3, the expressions inside the absolute value bars become positive, positive, and positive, respectively.
4. Case 4: x ≥ 3 When x ≥ 3, the expressions inside the absolute value bars become positive.
Solution Steps
Let's solve the equation step by step for each case:1. Case 1: x < 1 - For x < 1, the equation becomes: -(x-1) - (x+2) - (x-3) + 4 - Simplifying, we get: -x + 1 - x - 2 - x + 3 + 4 - Combining like terms, we get: -3x + 6 - So, for x < 1, the equation simplifies to -3x + 6.
2. Case 2: 1 ≤ x < -2 - For 1 ≤ x < -2, the equation becomes: (x-1) - (x+2) - (x-3) + 4 - Simplifying, we get: x - 1 - x - 2 - x + 3 + 4 - Combining like terms, we get: -3 - So, for 1 ≤ x < -2, the equation simplifies to -3.
3. Case 3: -2 ≤ x < 3 - For -2 ≤ x < 3, the equation becomes: (x-1) + (x+2) - (x-3) + 4 - Simplifying, we get: x - 1 + x + 2 - x + 3 + 4 - Combining like terms, we get: 2x + 8 - So, for -2 ≤ x < 3, the equation simplifies to 2x + 8.
4. Case 4: x ≥ 3 - For x ≥ 3, the equation becomes: (x-1) + (x+2) + (x-3) + 4 - Simplifying, we get: x - 1 + x + 2 + x - 3 + 4 - Combining like terms, we get: 3x + 2 - So, for x ≥ 3, the equation simplifies to 3x + 2.
Conclusion
In conclusion, the absolute value equation |x-1| + |x+2| - |x-3| + 4 can be simplified based on different ranges of x: - For x < 1, the equation simplifies to -3x + 6. - For 1 ≤ x < -2, the equation simplifies to -3. - For -2 ≤ x < 3, the equation simplifies to 2x + 8. - For x ≥ 3, the equation simplifies to 3x + 2.

Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili