Вопрос задан 15.06.2023 в 03:33. Предмет Алгебра. Спрашивает Король Дима.

З точки до прямої проведено дві похилі, довжини яких дорівнюють 17 см і 10 см. Проекції цих похилих

на пряму відносяться, як 5:2. Знайдіть довжину спільного перпендикуляра. С объяснением и рисунком
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Арнюдаева Юлия.

Ответ:

................................


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте позначимо дані на рисунку:

  • Нехай точка, від якої проводяться похилі, буде точкою A.
  • Нехай пряма, на яку проводяться проекції, буде прямою BC.
  • Похилі, довжини яких дорівнюють 17 см і 10 см, позначимо як AD і AE відповідно.

Ми знаємо, що відношення проекцій похилого AD до проекції похилого AE дорівнює 5:2. Отже, ми можемо позначити проекції на пряму BC як BD і CE.

Також, оскільки ми шукаємо довжину спільного перпендикуляра, ми позначимо його як PF, де F - точка перетину BD і CE.

За теоремою про подібні трикутники, відомо, що відношення довжин відповідних сторін подібних трикутників дорівнює відношенню їх проекцій.

Отже, ми можемо записати: BD/CE = AD/AE = 5/2

Також ми знаємо, що BD + CE дорівнює відстані між проекціями AD і AE. Оскільки ці проекції належать до похилих AD і AE, відповідно, ця відстань дорівнює сумі довжин цих похилих. Тобто, BD + CE = 17 см + 10 см = 27 см.

Тепер ми маємо систему двох рівнянь з двома невідомими: BD/CE = 5/2 (1) BD + CE = 27 (2)

Можемо розв'язати цю систему, використовуючи метод підстановки або метод рівняння з двох невідомих.

Після знаходження значень BD і CE, можна виміряти довжину спільного перпендикуляра PF, який є висотою подібних трикутників ABC і ADF.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос