Вопрос задан 10.06.2023 в 20:55. Предмет Алгебра. Спрашивает Саласюк Саша.

2. Представьте выражение в виде многочлена: (a³ – 1)(a³ + 2) + (a³ + 1)(a³ – 2).ПОМОГИТЕ СОЧ!!!​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Сучак Дима.

Ответ:

Объяснение:

Начнем с раскрытия скобок:

(a³ – 1)(a³ + 2) = a⁶ + 2a³ - a³ - 2 = a⁶ + a³ - 2

(a³ + 1)(a³ – 2) = a⁶ - 2a³ + a³ - 2 = a⁶ - a³ - 2

Теперь сложим полученные выражения:

(a³ – 1)(a³ + 2) + (a³ + 1)(a³ – 2) = (a⁶ + a³ - 2) + (a⁶ - a³ - 2) = 2a⁶ - 2

Таким образом, выражение можно представить в виде многочлена: 2a⁶ - 2.

0 0
Отвечает Халикова Алина.

Ответ:

Раскроем скобки, используя формулу (a-b)(a+b) = a²-b²:

(a³ – 1)(a³ + 2) + (a³ + 1)(a³ – 2)

= a^6 + 2a^3 - a^3 - 2 + a^6 - 2a^3 + a^3 - 2

Здесь мы получили 2 слагаемых, которые можно объединить:

= 2a^6 - 4

Таким образом, исходное выражение может быть представлено в виде многочлена:

2a^6 - 4

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для представления данного выражения в виде многочлена, раскроем скобки и произведем необходимые умножения:

(a³ – 1)(a³ + 2) + (a³ + 1)(a³ – 2)

Первое слагаемое: (a³ – 1)(a³ + 2) = a³ * a³ + a³ * 2 - 1 * a³ - 1 * 2 = a^6 + 2a³ - a³ - 2 = a^6 + a³ - 2

Второе слагаемое: (a³ + 1)(a³ – 2) = a³ * a³ + a³ * (-2) + 1 * a³ - 1 * (-2) = a^6 - 2a³ + a³ + 2 = a^6 - a³ + 2

Теперь сложим оба полученных многочлена: (a^6 + a³ - 2) + (a^6 - a³ + 2) = a^6 + a^6 + a³ - a³ - 2 + 2 = 2a^6

Итак, выражение (a³ – 1)(a³ + 2) + (a³ + 1)(a³ – 2) равно 2a^6.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос