
1. CA = 8, AD=3 CD= ?


Ответы на вопрос

Ответ:
СА =8 АД =3 СД =8- 3=5
Объяснение:
ЩЩЩШШ



To find the value of CD, we can use the information given about the lengths of different line segments.
Let's break down the given information:
CA = 8 AD = 3
We are looking to find the length of CD.
To solve this, we can use the triangle inequality theorem, which states that the sum of the lengths of any two sides of a triangle must be greater than the length of the remaining side.
In triangle CAD, we have the following sides:
CA = 8 AD = 3 CD = ?
According to the triangle inequality theorem, we have:
CA + AD > CD
Substituting the given values:
8 + 3 > CD
11 > CD
Therefore, the length of CD must be less than 11 units. Without additional information, we cannot determine the exact value of CD.



To find the value of CD, we can use the information given about the lengths of CA, AD, and CD.
We know that CA = 8 and AD = 3. To find CD, we can use the fact that the sum of the lengths of the two shorter sides of a triangle is always greater than the length of the longest side. This is known as the triangle inequality theorem.
Therefore, we can write the following inequality:
CA + AD > CD
Substituting the given values:
8 + 3 > CD
11 > CD
So, CD must be less than 11.
However, we don't have enough information to determine the exact value of CD. We only know that it must be less than 11 based on the triangle inequality theorem.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili