Вопрос задан 04.06.2023 в 13:57. Предмет Алгебра. Спрашивает Русс Герман.

Найди координаты вершины параболы y=1x2−2x+13.

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Игнатьев Илья.

Ответ: (1;12)

Объяснение:

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для нахождения координат вершины параболы, заданной уравнением y = ax^2 + bx + c, используется формула x = -b / (2a), где x - абсцисса вершины.

В данном случае у нас уравнение y = x^2 - 2x + 13, поэтому a = 1, b = -2, c = 13.

Используя формулу, мы можем найти абсциссу вершины: x = -(-2) / (2*1) = 2 / 2 = 1.

Теперь, чтобы найти ординату вершины, мы подставляем значение x обратно в уравнение: y = 1*(1)^2 - 2*(1) + 13 = 1 - 2 + 13 = 12.

Таким образом, координаты вершины параболы y = x^2 - 2x + 13 равны (1, 12).

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос