
3*4^x + 2*9^x = 5*6^x


Ответы на вопрос

разделим обе части на
сделаем замену
3у²-5у+2=0
D=(-5)²-4•3•2=1>0
у¹'²=(5±1)/6
у¹=1
у²=⅔
сделаем обратную замену
Ответ



To solve the equation 34^x + 29^x = 5*6^x, we can try to simplify it using some algebraic manipulation.
First, notice that we can write 6 as 2*3 and 9 as 3^2. So we can rewrite the equation as:
34^x + 2(3^2)^x = 5*(2*3)^x
Simplifying further, we get:
34^x + 23^(2x) = 52^x3^x
Now we can try to isolate the variable x on one side of the equation. Let's start by dividing both sides by 3^x:
3^(x)34^x/3^x + 23^(2x)/3^x = 52^x*3^x/3^x
Simplifying, we get:
34^x + 23^x = 5*2^x
Next, we can divide both sides by 2^x:
3*(4/2)^x + 2*(3/2)^x = 5
Simplifying, we get:
32^x + 2(3/2)^x = 5
Let y = (3/2)^x. Then we can rewrite the equation as:
32^x + 2y = 5
Now we have a linear equation in two variables, x and y. Solving for y, we get:
y = (5 - 3*2^x)/2
Substituting this back into the equation y = (3/2)^x, we get:
(3/2)^x = (5 - 3*2^x)/2
Multiplying both sides by 2, we get:
3^x/2^(x+1) = 5/2 - 3/2*2^x
Multiplying both sides by 2^(x+1), we get:
3^x = 52^(x+1) - 32^x
Simplifying, we get:
3^x = 22^(x+1) + 32^x
3^x = 2^(x+2) + 3*2^x
Now we can try to solve for x. Let's rewrite the equation as:
3^x - 3*2^x = 2^(x+2)
We can see that the left-hand side is a difference of two exponential terms with different bases. To solve for x, we can use a numerical method such as graphing or Newton's method. However, there is no exact algebraic solution for x in this equation.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili