Вопрос задан 26.04.2021 в 02:05. Предмет Алгебра. Спрашивает Гесман Анастасия.

Было 15 пригласительных карточек,цена 10 конвертов и блокнота 1 рубль 68 копеек.При том что цена

конверта в 8 раз дешевле блокнота,а цена карточек на 2 копейки дороже конвертов.сколько стоит карточка , блокнот и конверт? Очень прошу помочь с ответом
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Belkevych Alina.
Цена конверта - x
цена всех 15 карточек - 10x+2 копейки
цена блокнота - 8x
10x+8x=168 копеек
x=9,(3) копейки (что странно, подозреваю ошибку в условии)
дальше :
цена карточки
(10х+2)/15, и цена блокнота смотри вверху
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Обозначим цену конверта за x рублей, тогда цена блокнота будет 8x рублей.

Также, цена карточки на 2 копейки дороже конверта, то есть цена карточки составляет (x + 0.02) рублей.

Известно, что 10 конвертов и 1 блокнот стоят 1.68 рублей, то есть:

10x + 8x = 1.68 рублей

18x = 1.68 рублей

x = 0.0933 (округляем до 4 знаков после запятой)

Теперь, чтобы найти цену карточки, заменяем x на 0.0933 рублей в уравнении:

Цена карточки = x + 0.02 = 0.1133 рублей

И цену блокнота находим, умножив цену конверта на 8:

Цена блокнота = 8x = 0.7464 рублей

Таким образом, цена конверта составляет 0.0933 рубля, цена блокнота - 0.7464 рубля, а цена карточки - 0.1133 рубля.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос