Вопрос задан 15.04.2021 в 15:16. Предмет Алгебра. Спрашивает Гаур Андрей.

Срочно, пожалуйста. х^2-5х+6=0 найдите нули функции.

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кёнигсберг Милана.
х² -5х+6=0 
D=(-5)
²-4*1*6=25-24=1
x₁=(5-1)/2=2
x₂=(5+1)/2=3

Ответ: 2; 3.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Конечно, я могу помочь. Для того чтобы найти нули функции, необходимо решить квадратное уравнение:

х^2 - 5х + 6 = 0

Существует несколько способов решения квадратных уравнений, но один из наиболее распространенных - это использование формулы дискриминанта:

Для квадратного уравнения вида ax^2 + bx + c = 0, дискриминант D определяется по формуле:

D = b^2 - 4ac

Если D > 0, то уравнение имеет два различных действительных корня: x1 = (-b + sqrt(D)) / 2a x2 = (-b - sqrt(D)) / 2a

Если D = 0, то уравнение имеет один действительный корень: x = -b / 2a

Если D < 0, то уравнение не имеет действительных корней.

Вернемся к нашему уравнению:

х^2 - 5х + 6 = 0

a = 1, b = -5, c = 6

D = (-5)^2 - 4 * 1 * 6 = 1

Так как D > 0, у нас есть два действительных корня:

x1 = (-(-5) + sqrt(1)) / 2*1 = 3

x2 = (-(-5) - sqrt(1)) / 2*1 = 2

Таким образом, нули функции равны x1 = 3 и x2 = 2.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос