Вопрос задан 07.04.2021 в 18:07. Предмет Алгебра. Спрашивает Менский Лёша.

9x²-4=0 0,64-y²=0 4x²-2x=0 5x²-20=0 z²-7=0 3x-2x²=0 y²-=0 11-z²=0 -5x²+75=0 0,2x-5x²=0

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Идрисова Джамиля.
1. x=  \frac{2}{3} ; -  \frac{2}{3}
2. х=-0.8; 0.8
3. у= 0;   \frac{1}{2}
4. х= 2; -2
5. z= -  \sqrt{7}  \sqrt{7}
6. х= 0;   \frac{3}{2}
7. у=   \frac{4}{7} ; -   \frac{4}{7}
8. z=-  \sqrt{11};\sqrt{11}
9. х=-  \sqrt{15} ;\sqrt{15}
10. х=0;  \frac{1}{25}
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

I see that you have written a list of equations. If you are looking for solutions to these equations, I can help you with that.

  1. 9x²-4=0: To solve for x, we can start by adding 4 to both sides of the equation: 9x² = 4 Then, we can divide both sides by 9: x² = 4/9 Finally, we take the square root of both sides: x = ±2/3

    Therefore, the solutions are x = 2/3 and x = -2/3.

  2. 0,64-y²=0: To solve for y, we can start by adding y² to both sides of the equation: 0,64 = y² Then, we take the square root of both sides: y = ±0,8

    Therefore, the solutions are y = 0.8 and y = -0.8.

  3. 4x²-2x=0: To solve for x, we can factor out x: x(4x-2) = 0 Then, we can use the zero product property and set each factor to zero: x = 0 or 4x-2 = 0 If 4x-2 = 0, then we can solve for x by adding 2 and dividing by 4: x = 1/2

    Therefore, the solutions are x = 0 and x = 1/2.

  4. 5x²-20=0: To solve for x, we can start by factoring out 5: 5(x²-4) = 0 Then, we can use the zero product property and set each factor to zero: x²-4 = 0 We can then add 4 to both sides of the equation: x² = 4 Finally, we take the square root of both sides: x = ±2

    Therefore, the solutions are x = 2 and x = -2.

  5. z²-7=0: To solve for z, we can add 7 to both sides of the equation: z² = 7 Then, we take the square root of both sides: z = ±√7

    Therefore, the solutions are z = √7 and z = -√7.

  6. 3x-2x²=0: To solve for x, we can factor out x: x(3-2x) = 0 Then, we can use the zero product property and set each factor to zero: x = 0 or 3-2x = 0 If 3-2x = 0, then we can solve for x by subtracting 3 and dividing by -2: x = 3/2

    Therefore, the solutions are x = 0 and x = 3/2.

  7. y²=0: To solve for y, we can take the square root of both sides: y = 0

    Therefore, the only solution is y = 0.

  8. 11-z²=0: To solve for z, we can subtract 11 from both sides of the equation: -z² = -11 Then, we can divide both sides by -1: z² = 11 Finally, we take the square root of both sides: z = ±√11

    Therefore, the solutions are z

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос